Spaces:
Paused
Paused
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,183 +1,10 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
<br>
|
| 13 |
-
<div align="center">
|
| 14 |
-
<img src="./imgs/maskgct/maskgct.png" width="100%">
|
| 15 |
-
</div>
|
| 16 |
-
<br>
|
| 17 |
-
|
| 18 |
-
## News
|
| 19 |
-
|
| 20 |
-
- **2024/10/19**: We release **MaskGCT**, a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision. MaskGCT is trained on Emilia dataset and achieves SOTA zero-shot TTS perfermance.
|
| 21 |
-
|
| 22 |
-
## Quickstart
|
| 23 |
-
|
| 24 |
-
**Clone and install**
|
| 25 |
-
|
| 26 |
-
```bash
|
| 27 |
-
git clone https://github.com/open-mmlab/Amphion.git
|
| 28 |
-
# create env
|
| 29 |
-
bash ./models/tts/maskgct/env.sh
|
| 30 |
-
```
|
| 31 |
-
|
| 32 |
-
**Model download**
|
| 33 |
-
|
| 34 |
-
We provide the following pretrained checkpoints:
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
| Model Name | Description |
|
| 38 |
-
|-------------------|-------------|
|
| 39 |
-
| [Acoustic Codec](https://huggingface.co/amphion/MaskGCT/tree/main/acoustic_codec) | Converting speech to semantic tokens. |
|
| 40 |
-
| [Semantic Codec](https://huggingface.co/amphion/MaskGCT/tree/main/semantic_codec) | Converting speech to acoustic tokens and reconstructing waveform from acoustic tokens. |
|
| 41 |
-
| [MaskGCT-T2S](https://huggingface.co/amphion/MaskGCT/tree/main/t2s_model) | Predicting semantic tokens with text and prompt semantic tokens. |
|
| 42 |
-
| [MaskGCT-S2A](https://huggingface.co/amphion/MaskGCT/tree/main/s2a_model) | Predicts acoustic tokens conditioned on semantic tokens. |
|
| 43 |
-
|
| 44 |
-
You can download all pretrained checkpoints from [HuggingFace](https://huggingface.co/amphion/MaskGCT/tree/main) or use huggingface api.
|
| 45 |
-
|
| 46 |
-
```python
|
| 47 |
-
from huggingface_hub import hf_hub_download
|
| 48 |
-
|
| 49 |
-
# download semantic codec ckpt
|
| 50 |
-
semantic_code_ckpt = hf_hub_download("amphion/MaskGCT" filename="semantic_codec/model.safetensors")
|
| 51 |
-
|
| 52 |
-
# download acoustic codec ckpt
|
| 53 |
-
codec_encoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model.safetensors")
|
| 54 |
-
codec_decoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model_1.safetensors")
|
| 55 |
-
|
| 56 |
-
# download t2s model ckpt
|
| 57 |
-
t2s_model_ckpt = hf_hub_download("amphion/MaskGCT", filename="t2s_model/model.safetensors")
|
| 58 |
-
|
| 59 |
-
# download s2a model ckpt
|
| 60 |
-
s2a_1layer_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_1layer/model.safetensors")
|
| 61 |
-
s2a_full_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_full/model.safetensors")
|
| 62 |
-
```
|
| 63 |
-
|
| 64 |
-
**Basic Usage**
|
| 65 |
-
|
| 66 |
-
You can use the following code to generate speech from text and a prompt speech (the code is also provided in [inference.py](./models/tts/maskgct/maskgct_inference.py)).
|
| 67 |
-
|
| 68 |
-
```python
|
| 69 |
-
from models.tts.maskgct.maskgct_utils import *
|
| 70 |
-
from huggingface_hub import hf_hub_download
|
| 71 |
-
import safetensors
|
| 72 |
-
import soundfile as sf
|
| 73 |
-
|
| 74 |
-
if __name__ == "__main__":
|
| 75 |
-
|
| 76 |
-
# build model
|
| 77 |
-
device = torch.device("cuda:0")
|
| 78 |
-
cfg_path = "./models/tts/maskgct/config/maskgct.json"
|
| 79 |
-
cfg = load_config(cfg_path)
|
| 80 |
-
# 1. build semantic model (w2v-bert-2.0)
|
| 81 |
-
semantic_model, semantic_mean, semantic_std = build_semantic_model(device)
|
| 82 |
-
# 2. build semantic codec
|
| 83 |
-
semantic_codec = build_semantic_codec(cfg.model.semantic_codec, device)
|
| 84 |
-
# 3. build acoustic codec
|
| 85 |
-
codec_encoder, codec_decoder = build_acoustic_codec(cfg.model.acoustic_codec, device)
|
| 86 |
-
# 4. build t2s model
|
| 87 |
-
t2s_model = build_t2s_model(cfg.model.t2s_model, device)
|
| 88 |
-
# 5. build s2a model
|
| 89 |
-
s2a_model_1layer = build_s2a_model(cfg.model.s2a_model.s2a_1layer, device)
|
| 90 |
-
s2a_model_full = build_s2a_model(cfg.model.s2a_model.s2a_full, device)
|
| 91 |
-
|
| 92 |
-
# download checkpoint
|
| 93 |
-
...
|
| 94 |
-
|
| 95 |
-
# load semantic codec
|
| 96 |
-
safetensors.torch.load_model(semantic_codec, semantic_code_ckpt)
|
| 97 |
-
# load acoustic codec
|
| 98 |
-
safetensors.torch.load_model(codec_encoder, codec_encoder_ckpt)
|
| 99 |
-
safetensors.torch.load_model(codec_decoder, codec_decoder_ckpt)
|
| 100 |
-
# load t2s model
|
| 101 |
-
safetensors.torch.load_model(t2s_model, t2s_model_ckpt)
|
| 102 |
-
# load s2a model
|
| 103 |
-
safetensors.torch.load_model(s2a_model_1layer, s2a_1layer_ckpt)
|
| 104 |
-
safetensors.torch.load_model(s2a_model_full, s2a_full_ckpt)
|
| 105 |
-
|
| 106 |
-
# inference
|
| 107 |
-
prompt_wav_path = "./models/tts/maskgct/wav/prompt.wav"
|
| 108 |
-
save_path = "[YOUR SAVE PATH]"
|
| 109 |
-
prompt_text = " We do not break. We never give in. We never back down."
|
| 110 |
-
target_text = "In this paper, we introduce MaskGCT, a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision."
|
| 111 |
-
# Specify the target duration (in seconds). If target_len = None, we use a simple rule to predict the target duration.
|
| 112 |
-
target_len = 18
|
| 113 |
-
|
| 114 |
-
maskgct_inference_pipeline = MaskGCT_Inference_Pipeline(
|
| 115 |
-
semantic_model,
|
| 116 |
-
semantic_codec,
|
| 117 |
-
codec_encoder,
|
| 118 |
-
codec_decoder,
|
| 119 |
-
t2s_model,
|
| 120 |
-
s2a_model_1layer,
|
| 121 |
-
s2a_model_full,
|
| 122 |
-
semantic_mean,
|
| 123 |
-
semantic_std,
|
| 124 |
-
device,
|
| 125 |
-
)
|
| 126 |
-
|
| 127 |
-
recovered_audio = maskgct_inference_pipeline.maskgct_inference(
|
| 128 |
-
prompt_wav_path, prompt_text, target_text, "en", "en", target_len=target_len
|
| 129 |
-
)
|
| 130 |
-
sf.write(save_path, recovered_audio, 24000)
|
| 131 |
-
```
|
| 132 |
-
|
| 133 |
-
**Jupyter Notebook**
|
| 134 |
-
|
| 135 |
-
We also provide a [jupyter notebook](./models/tts/maskgct/maskgct_demo.ipynb) to show more details of MaskGCT inference.
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
## Evaluation Results of MaskGCT
|
| 139 |
-
|
| 140 |
-
| System | SIM-O↑ | WER↓ | FSD↓ | SMOS↑ | CMOS↑ |
|
| 141 |
-
| :--- | :---: | :---: | :---: | :---: | :---: |
|
| 142 |
-
| | | **LibriSpeech test-clean** |
|
| 143 |
-
| Ground Truth | 0.68 | 1.94 | | 4.05±0.12 | 0.00 |
|
| 144 |
-
| VALL-E | 0.50 | 5.90 | - | 3.47 ±0.26 | -0.52±0.22 |
|
| 145 |
-
| VoiceBox | 0.64 | 2.03 | 0.762 | 3.80±0.17 | -0.41±0.13 |
|
| 146 |
-
| NaturalSpeech 3 | 0.67 | 1.94 | 0.786 | 4.26±0.10 | 0.16±0.14 |
|
| 147 |
-
| VoiceCraft | 0.45 | 4.68 | 0.981 | 3.52±0.21 | -0.33 ±0.16 |
|
| 148 |
-
| XTTS-v2 | 0.51 | 4.20 | 0.945 | 3.02±0.22 | -0.98 ±0.19 |
|
| 149 |
-
| MaskGCT | 0.687(0.723) | 2.634(1.976) | 0.886 | 4.27±0.14 | 0.10±0.16 |
|
| 150 |
-
| MaskGCT(gt length) | 0.697 | 2.012 | 0.746 | 4.33±0.11 | 0.13±0.13 |
|
| 151 |
-
| | | **SeedTTS test-en** |
|
| 152 |
-
| Ground Truth | 0.730 | 2.143 | | 3.92±0.15 | 0.00 |
|
| 153 |
-
| CosyVoice | 0.643 | 4.079 | 0.316 | 3.52±0.17 | -0.41 ±0.18 |
|
| 154 |
-
| XTTS-v2 | 0.463 | 3.248 | 0.484 | 3.15±0.22 | -0.86±0.19 |
|
| 155 |
-
| VoiceCraft | 0.470 | 7.556 | 0.226 | 3.18±0.20 | -1.08 ±0.15 |
|
| 156 |
-
| MaskGCT | 0.717(0.760) | 2.623(1.283) | 0.188 | 4.24 ±0.12 | 0.03 ±0.14 |
|
| 157 |
-
| MaskGCT(gt length) | 0.728 | 2.466 | 0.159 | 4.13 ±0.17 | 0.12 ±0.15 |
|
| 158 |
-
| | | **SeedTTS test-zh** |
|
| 159 |
-
| Ground Truth | 0.750 | 1.254 | | 3.86 ±0.17 | 0.00 |
|
| 160 |
-
| CosyVoice | 0.750 | 4.089 | 0.276 | 3.54 ±0.12 | -0.45 ±0.15 |
|
| 161 |
-
| XTTS-v2 | 0.635 | 2.876 | 0.413 | 2.95 ±0.18 | -0.81 ±0.22 |
|
| 162 |
-
| MaskGCT | 0.774(0.805) | 2.273(0.843) | 0.106 | 4.09 ±0.12 | 0.05 ±0.17 |
|
| 163 |
-
| MaskGCT(gt length) | 0.777 | 2.183 | 0.101 | 4.11 ±0.12 | 0.08±0.18 |
|
| 164 |
-
|
| 165 |
-
## Citations
|
| 166 |
-
|
| 167 |
-
If you use MaskGCT in your research, please cite the following paper:
|
| 168 |
-
|
| 169 |
-
```bibtex
|
| 170 |
-
@article{wang2024maskgct,
|
| 171 |
-
title={MaskGCT: Zero-Shot Text-to-Speech with Masked Generative Codec Transformer},
|
| 172 |
-
author={Wang, Yuancheng and Zhan, Haoyue and Liu, Liwei and Zeng, Ruihong and Guo, Haotian and Zheng, Jiachen and Zhang, Qiang and Zhang, Shunsi and Wu, Zhizheng},
|
| 173 |
-
journal={arXiv preprint arXiv:2409.00750},
|
| 174 |
-
year={2024}
|
| 175 |
-
}
|
| 176 |
-
|
| 177 |
-
@article{zhang2023amphion,
|
| 178 |
-
title={Amphion: An open-source audio, music and speech generation toolkit},
|
| 179 |
-
author={Zhang, Xueyao and Xue, Liumeng and Wang, Yuancheng and Gu, Yicheng and Chen, Xi and Fang, Zihao and Chen, Haopeng and Zou, Lexiao and Wang, Chaoren and Han, Jun and others},
|
| 180 |
-
journal={arXiv preprint arXiv:2312.09911},
|
| 181 |
-
year={2023}
|
| 182 |
-
}
|
| 183 |
-
```
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
title: MaskGCT TTS Demo
|
| 4 |
+
sdk: gradio
|
| 5 |
+
emoji: 😻
|
| 6 |
+
colorFrom: purple
|
| 7 |
+
colorTo: purple
|
| 8 |
+
pinned: false
|
| 9 |
+
short_description: MaskGCT TTS Demo
|
| 10 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|