Spaces:
Running
Running
Update previewer/modules.py
Browse files- previewer/modules.py +20 -11
previewer/modules.py
CHANGED
|
@@ -1,11 +1,12 @@
|
|
| 1 |
from torch import nn
|
| 2 |
|
| 3 |
-
|
|
|
|
| 4 |
class Previewer(nn.Module):
|
| 5 |
def __init__(self, c_in=16, c_hidden=512, c_out=3):
|
| 6 |
super().__init__()
|
| 7 |
self.blocks = nn.Sequential(
|
| 8 |
-
nn.Conv2d(c_in, c_hidden, kernel_size=1),
|
| 9 |
nn.GELU(),
|
| 10 |
nn.BatchNorm2d(c_hidden),
|
| 11 |
|
|
@@ -13,23 +14,31 @@ class Previewer(nn.Module):
|
|
| 13 |
nn.GELU(),
|
| 14 |
nn.BatchNorm2d(c_hidden),
|
| 15 |
|
| 16 |
-
nn.ConvTranspose2d(c_hidden, c_hidden//2, kernel_size=2, stride=2),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
nn.GELU(),
|
| 18 |
-
nn.BatchNorm2d(c_hidden//
|
| 19 |
|
| 20 |
-
nn.Conv2d(c_hidden//
|
| 21 |
nn.GELU(),
|
| 22 |
-
nn.BatchNorm2d(c_hidden//
|
| 23 |
|
| 24 |
-
nn.ConvTranspose2d(c_hidden//
|
| 25 |
nn.GELU(),
|
| 26 |
-
nn.BatchNorm2d(c_hidden//4),
|
| 27 |
|
| 28 |
-
nn.Conv2d(c_hidden//4, c_hidden//4, kernel_size=3, padding=1),
|
| 29 |
nn.GELU(),
|
| 30 |
-
nn.BatchNorm2d(c_hidden//4),
|
| 31 |
|
| 32 |
-
nn.Conv2d(c_hidden//4, c_out, kernel_size=1),
|
| 33 |
)
|
| 34 |
|
| 35 |
def forward(self, x):
|
|
|
|
| 1 |
from torch import nn
|
| 2 |
|
| 3 |
+
|
| 4 |
+
# Fast Decoder for Stage C latents. E.g. 16 x 24 x 24 -> 3 x 192 x 192
|
| 5 |
class Previewer(nn.Module):
|
| 6 |
def __init__(self, c_in=16, c_hidden=512, c_out=3):
|
| 7 |
super().__init__()
|
| 8 |
self.blocks = nn.Sequential(
|
| 9 |
+
nn.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels
|
| 10 |
nn.GELU(),
|
| 11 |
nn.BatchNorm2d(c_hidden),
|
| 12 |
|
|
|
|
| 14 |
nn.GELU(),
|
| 15 |
nn.BatchNorm2d(c_hidden),
|
| 16 |
|
| 17 |
+
nn.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32
|
| 18 |
+
nn.GELU(),
|
| 19 |
+
nn.BatchNorm2d(c_hidden // 2),
|
| 20 |
+
|
| 21 |
+
nn.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1),
|
| 22 |
+
nn.GELU(),
|
| 23 |
+
nn.BatchNorm2d(c_hidden // 2),
|
| 24 |
+
|
| 25 |
+
nn.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64
|
| 26 |
nn.GELU(),
|
| 27 |
+
nn.BatchNorm2d(c_hidden // 4),
|
| 28 |
|
| 29 |
+
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
| 30 |
nn.GELU(),
|
| 31 |
+
nn.BatchNorm2d(c_hidden // 4),
|
| 32 |
|
| 33 |
+
nn.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128
|
| 34 |
nn.GELU(),
|
| 35 |
+
nn.BatchNorm2d(c_hidden // 4),
|
| 36 |
|
| 37 |
+
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
| 38 |
nn.GELU(),
|
| 39 |
+
nn.BatchNorm2d(c_hidden // 4),
|
| 40 |
|
| 41 |
+
nn.Conv2d(c_hidden // 4, c_out, kernel_size=1),
|
| 42 |
)
|
| 43 |
|
| 44 |
def forward(self, x):
|