miniCPM / app.py
Suvadeep Das
Update app.py
7bd6234 verified
raw
history blame
16.1 kB
import spaces
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer
from PIL import Image
import base64
import io
import os
import json
from huggingface_hub import login
from pdf2image import convert_from_bytes
import tempfile
from datetime import datetime
# Set your HF token (add this to your Space secrets)
HF_TOKEN = os.getenv("HUGGING_FACE_HUB_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
# Global variables for model caching
_model = None
_tokenizer = None
@spaces.GPU
def load_model():
"""Load MiniCPM model on GPU when needed"""
global _model, _tokenizer
if _model is not None and _tokenizer is not None:
return _model, _tokenizer
try:
_tokenizer = AutoTokenizer.from_pretrained(
"openbmb/MiniCPM-V-2_6",
trust_remote_code=True,
use_fast=True
)
_model = AutoModel.from_pretrained(
"openbmb/MiniCPM-V-2_6",
trust_remote_code=True,
torch_dtype=torch.float16,
device_map="auto"
)
return _model, _tokenizer
except Exception as e:
print(f"Error loading gated model: {e}")
_tokenizer = AutoTokenizer.from_pretrained(
"openbmb/MiniCPM-V-2",
trust_remote_code=True,
use_fast=True
)
_model = AutoModel.from_pretrained(
"openbmb/MiniCPM-V-2",
trust_remote_code=True,
torch_dtype=torch.float16,
device_map="auto"
)
return _model, _tokenizer
def pdf_to_images(pdf_file):
"""Convert PDF file to list of PIL images"""
try:
if hasattr(pdf_file, 'read'):
pdf_bytes = pdf_file.read()
else:
with open(pdf_file, 'rb') as f:
pdf_bytes = f.read()
images = convert_from_bytes(pdf_bytes, dpi=300)
return images
except Exception as e:
print(f"Error converting PDF to images: {e}")
return []
def get_medical_extraction_prompt():
"""Get the medical data extraction prompt"""
return """You are a medical document OCR and data extraction specialist. Analyze this medical document image and extract ALL visible information. Return the data in this exact JSON format:
{
"data": {
"date_of_receipt": "",
"patient_first_name": "",
"patient_last_name": "",
"patient_dob": "",
"patient_gender": "",
"patient_primary_phone_number": "",
"patient_secondary_phone_number": "",
"patient_email": "",
"patient_address": "",
"patient_zip_code": "",
"referral_source": "",
"referral_source_phone_no": "",
"referral_source_fax_no": "",
"referral_source_email": "",
"primary_insurance": {
"payer_name": "",
"member_id": "",
"group_id": ""
},
"secondary_insurance": {
"payer_name": "",
"member_id": "",
"group_id": ""
},
"tertiary_insurance": {
"payer_name": "",
"member_id": "",
"group_id": ""
},
"priority": "",
"reason_for_referral": "",
"diagnosis_informations": [
{
"code": "",
"description": ""
}
],
"refine_reason": ""
},
"confidence_scores": {
"date_of_receipt": 0.0,
"patient_first_name": 0.0,
"patient_last_name": 0.0,
"patient_dob": 0.0,
"patient_gender": 0.0,
"patient_primary_phone_number": 0.0,
"patient_secondary_phone_number": 0.0,
"patient_email": 0.0,
"patient_address": 0.0,
"patient_zip_code": 0.0,
"referral_source": 0.0,
"referral_source_phone_no": 0.0,
"referral_source_fax_no": 0.0,
"referral_source_email": 0.0,
"primary_insurance": {
"payer_name": 0.0,
"member_id": 0.0,
"group_id": 0.0
},
"priority": 0.0,
"reason_for_referral": 0.0
}
}
INSTRUCTIONS:
1. Read ALL text visible in the document
2. Extract exact values as they appear (no modifications)
3. For dates, use MM/DD/YYYY format
4. For phone numbers, use format like 850-463-0143
5. Assign confidence scores 0.0-1.0 (1.0 = completely certain, 0.0 = not found)
6. If information is not visible, leave field empty but still include it
7. Return ONLY the JSON, no other text"""
@spaces.GPU
def extract_data_from_image(image, extraction_prompt):
"""Extract data from a single image using MiniCPM on GPU"""
try:
model, tokenizer = load_model()
# Convert PIL image to proper format if needed
if hasattr(image, 'convert'):
image = image.convert('RGB')
# Use the correct MiniCPM chat interface
response = model.chat(
image=image,
msgs=[{
"role": "user",
"content": extraction_prompt
}],
tokenizer=tokenizer,
sampling=False, # Use deterministic output
temperature=0.1,
max_new_tokens=2048
)
# Try to parse JSON response
try:
parsed_data = json.loads(response)
return {
"status": "success",
"extracted_data": parsed_data,
"raw_response": response,
"model_used": "MiniCPM-V-2_6-GPU"
}
except json.JSONDecodeError:
return {
"status": "partial_success",
"extracted_data": response,
"raw_response": response,
"model_used": "MiniCPM-V-2_6-GPU",
"note": "Response was not valid JSON"
}
except Exception as e:
return {
"status": "error",
"error": str(e),
"extracted_data": None
}
def combine_page_data(pages_data):
"""Combine extracted data from multiple pages into final medical record"""
combined_data = {
"date_of_receipt": "",
"patient_first_name": "",
"patient_last_name": "",
"patient_dob": "",
"patient_gender": "",
"patient_primary_phone_number": "",
"patient_secondary_phone_number": "",
"patient_email": "",
"patient_address": "",
"patient_zip_code": "",
"referral_source": "",
"referral_source_phone_no": "",
"referral_source_fax_no": "",
"referral_source_email": "",
"primary_insurance": {
"payer_name": "",
"member_id": "",
"group_id": ""
},
"secondary_insurance": {
"payer_name": None,
"member_id": None,
"group_id": None
},
"tertiary_insurance": {
"payer_name": None,
"member_id": None,
"group_id": None
},
"priority": "",
"reason_for_referral": "",
"diagnosis_informations": [],
"refine_reason": "",
"extracted_page_numbers": []
}
combined_confidence = {}
# Combine data from all pages
for page_num, page_data in enumerate(pages_data, 1):
if page_data["page_data"]["status"] == "success":
extracted = page_data["page_data"]["extracted_data"]
# If we got JSON data, merge it
if isinstance(extracted, dict) and "data" in extracted:
page_info = extracted["data"]
# Merge non-empty fields (first non-empty value wins)
for field, value in page_info.items():
if field in combined_data and value and not combined_data[field]:
combined_data[field] = value
combined_data["extracted_page_numbers"].append(page_num)
# Merge confidence scores
if "confidence_scores" in extracted:
for field, score in extracted["confidence_scores"].items():
if field not in combined_confidence and score > 0:
combined_confidence[field] = score
return {
"data": combined_data,
"confidence_scores": combined_confidence,
"fields_needing_review": [],
"metadata": {
"extraction_timestamp": datetime.now().isoformat(),
"model_used": "MiniCPM-V-2_6-GPU",
"confidence_threshold": 0.9,
"requires_human_review": False,
"total_pages_processed": len(pages_data)
}
}
@spaces.GPU(duration=180) # 3 minutes for processing
def extract_efax_from_pdf(pdf_file, custom_prompt=None):
"""Main function to process multi-page PDF eFax on GPU"""
try:
if pdf_file is None:
return {
"status": "error",
"error": "No PDF file provided",
"total_pages": 0,
"pages_data": []
}
# Convert PDF to images
images = pdf_to_images(pdf_file)
if not images:
return {
"status": "error",
"error": "Could not convert PDF to images",
"total_pages": 0,
"pages_data": []
}
# Use custom prompt or default medical extraction prompt
extraction_prompt = custom_prompt if custom_prompt else get_medical_extraction_prompt()
# Process each page
pages_data = []
for i, image in enumerate(images):
print(f"Processing page {i+1}/{len(images)}")
page_result = extract_data_from_image(image, extraction_prompt)
pages_data.append({
"page_number": i + 1,
"page_data": page_result
})
# Combine data from all pages
combined_result = combine_page_data(pages_data)
# Final result structure
result = {
"status": "success",
"total_pages": len(images),
"pages_data": pages_data,
"combined_extraction": combined_result,
"model_used": "MiniCPM-V-2_6-ZeroGPU",
"hardware": "ZeroGPU"
}
return result
except Exception as e:
return {
"status": "error",
"error": str(e),
"total_pages": 0,
"pages_data": []
}
# Create Gradio Interface
def create_gradio_interface():
with gr.Blocks(title="eFax PDF Data Extractor - ZeroGPU", theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸ₯ eFax Medical Data Extraction API")
gr.Markdown("πŸš€ **GPU-Accelerated** processing using MiniCPM-V-2_6 on ZeroGPU")
with gr.Tab("πŸ“„ PDF Upload & Extraction"):
with gr.Row():
with gr.Column():
pdf_input = gr.File(
file_types=[".pdf"],
label="Upload eFax PDF",
file_count="single"
)
with gr.Accordion("πŸ”§ Advanced Options", open=False):
prompt_input = gr.Textbox(
value="",
label="Custom Extraction Prompt (leave empty for default medical extraction)",
lines=5,
placeholder="Leave empty to use optimized medical data extraction prompt..."
)
extract_btn = gr.Button("πŸš€ Extract Medical Data (GPU)", variant="primary", size="lg")
with gr.Column():
status_output = gr.Textbox(label="πŸ“Š Processing Status", interactive=False)
output = gr.JSON(label="πŸ“‹ Extracted Medical Data", show_label=True)
with gr.Tab("πŸ”Œ API Usage"):
gr.Markdown("""
## API Endpoints (ZeroGPU Powered)
Your Space runs on **ZeroGPU** for 10-50x faster processing!
### Python API Usage
```
import requests
import base64
# Convert PDF to base64
with open("medical_fax.pdf", "rb") as f:
pdf_b64 = base64.b64encode(f.read()).decode()
response = requests.post(
"https://your-username-extracting-efax.hf.space/api/predict",
json={
"data": [
{"name": "medical_fax.pdf", "data": f"application/pdf;base64,{pdf_b64}"},
"" # Leave empty for default prompt
]
}
)
result = response.json()
# Access combined medical data
medical_data = result["data"]["combined_extraction"]
print("Patient:", medical_data["data"]["patient_first_name"], medical_data["data"]["patient_last_name"])
print("Insurance:", medical_data["data"]["primary_insurance"]["payer_name"])
```
### Response Format
```
{
"status": "success",
"total_pages": 13,
"combined_extraction": {
"data": {
"patient_first_name": "John",
"patient_last_name": "Doe",
"primary_insurance": {
"payer_name": "UNITED HEALTHCARE",
"member_id": "123456789"
}
},
"confidence_scores": {...},
"metadata": {...}
}
}
```
""")
with gr.Tab("⚑ Performance Info"):
gr.Markdown("""
## ZeroGPU Performance
- **πŸ”₯ Hardware**: ZeroGPU (70GB VRAM)
- **⚑ Speed**: 10-50x faster than CPU processing
- **⏱️ Processing Time**: 2-5 minutes for 6-13 page eFax
- **πŸ€– Model**: MiniCPM-V-2_6 optimized for medical documents
- **πŸ’‘ Dynamic Allocation**: GPU activates only during processing
## Medical Data Extracted
- βœ… Patient Demographics (Name, DOB, Gender, Address)
- βœ… Contact Information (Phone, Email)
- βœ… Insurance Information (Primary, Secondary, Tertiary)
- βœ… Medical Codes & Diagnoses
- βœ… Referral Source & Priority
- βœ… Confidence Scores for Quality Control
## HIPAA Compliance
- πŸ”’ All processing in-memory (no persistent storage)
- πŸ›‘οΈ Secure GPU processing environment
- πŸ“‹ Audit trail with confidence scores
""")
def process_with_status(pdf_file, custom_prompt):
if pdf_file is None:
return "❌ No PDF file uploaded", {"error": "Please upload a PDF file"}
yield "πŸ“„ Converting PDF to images...", {}
try:
result = extract_efax_from_pdf(pdf_file, custom_prompt if custom_prompt.strip() else None)
if result["status"] == "success":
yield f"βœ… Successfully processed {result['total_pages']} pages", result
else:
yield f"❌ Error: {result.get('error', 'Unknown error')}", result
except Exception as e:
yield f"❌ Processing failed: {str(e)}", {"error": str(e)}
# Connect the interface
extract_btn.click(
fn=process_with_status,
inputs=[pdf_input, prompt_input],
outputs=[status_output, output],
queue=True
)
return demo
# Launch the app
if __name__ == "__main__":
demo = create_gradio_interface()
demo.queue(
default_concurrency_limit=1,
max_size=10
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
)