Spaces:
Sleeping
Sleeping
cuizhanming
commited on
Commit
·
4181e3b
1
Parent(s):
1fe7de1
Update agent file
Browse files- agent.py +28 -40
- app.py +12 -14
- requirements.txt +1 -3
agent.py
CHANGED
|
@@ -123,7 +123,7 @@ sys_msg = SystemMessage(content=system_prompt)
|
|
| 123 |
# build a retriever
|
| 124 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
|
| 125 |
supabase: Client = create_client(
|
| 126 |
-
os.environ.get("SUPABASE_URL"),
|
| 127 |
os.environ.get("SUPABASE_SERVICE_KEY"))
|
| 128 |
vector_store = SupabaseVectorStore(
|
| 129 |
client=supabase,
|
|
@@ -137,8 +137,6 @@ create_retriever_tool = create_retriever_tool(
|
|
| 137 |
description="A tool to retrieve similar questions from a vector store.",
|
| 138 |
)
|
| 139 |
|
| 140 |
-
|
| 141 |
-
|
| 142 |
tools = [
|
| 143 |
multiply,
|
| 144 |
add,
|
|
@@ -177,47 +175,37 @@ def build_graph(provider: str = "groq"):
|
|
| 177 |
def assistant(state: MessagesState):
|
| 178 |
"""Assistant node"""
|
| 179 |
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
| 180 |
-
|
| 181 |
-
# def retriever(state: MessagesState):
|
| 182 |
-
# """Retriever node"""
|
| 183 |
-
# similar_question = vector_store.similarity_search(state["messages"][0].content)
|
| 184 |
-
#example_msg = HumanMessage(
|
| 185 |
-
# content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
| 186 |
-
# )
|
| 187 |
-
# return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
| 188 |
-
|
| 189 |
-
from langchain_core.messages import AIMessage
|
| 190 |
|
| 191 |
def retriever(state: MessagesState):
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
else:
|
| 199 |
-
answer = content.strip()
|
| 200 |
-
|
| 201 |
-
return {"messages": [AIMessage(content=answer)]}
|
| 202 |
-
|
| 203 |
-
# builder = StateGraph(MessagesState)
|
| 204 |
-
#builder.add_node("retriever", retriever)
|
| 205 |
-
#builder.add_node("assistant", assistant)
|
| 206 |
-
#builder.add_node("tools", ToolNode(tools))
|
| 207 |
-
#builder.add_edge(START, "retriever")
|
| 208 |
-
#builder.add_edge("retriever", "assistant")
|
| 209 |
-
#builder.add_conditional_edges(
|
| 210 |
-
# "assistant",
|
| 211 |
-
# tools_condition,
|
| 212 |
-
#)
|
| 213 |
-
#builder.add_edge("tools", "assistant")
|
| 214 |
|
| 215 |
builder = StateGraph(MessagesState)
|
| 216 |
builder.add_node("retriever", retriever)
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
builder.
|
| 220 |
-
builder.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
# Compile graph
|
| 223 |
-
return builder.compile()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
# build a retriever
|
| 124 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
|
| 125 |
supabase: Client = create_client(
|
| 126 |
+
os.environ.get("SUPABASE_URL"),
|
| 127 |
os.environ.get("SUPABASE_SERVICE_KEY"))
|
| 128 |
vector_store = SupabaseVectorStore(
|
| 129 |
client=supabase,
|
|
|
|
| 137 |
description="A tool to retrieve similar questions from a vector store.",
|
| 138 |
)
|
| 139 |
|
|
|
|
|
|
|
| 140 |
tools = [
|
| 141 |
multiply,
|
| 142 |
add,
|
|
|
|
| 175 |
def assistant(state: MessagesState):
|
| 176 |
"""Assistant node"""
|
| 177 |
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
def retriever(state: MessagesState):
|
| 180 |
+
"""Retriever node"""
|
| 181 |
+
similar_question = vector_store.similarity_search(state["messages"][0].content)
|
| 182 |
+
example_msg = HumanMessage(
|
| 183 |
+
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
| 184 |
+
)
|
| 185 |
+
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
builder = StateGraph(MessagesState)
|
| 188 |
builder.add_node("retriever", retriever)
|
| 189 |
+
builder.add_node("assistant", assistant)
|
| 190 |
+
builder.add_node("tools", ToolNode(tools))
|
| 191 |
+
builder.add_edge(START, "retriever")
|
| 192 |
+
builder.add_edge("retriever", "assistant")
|
| 193 |
+
builder.add_conditional_edges(
|
| 194 |
+
"assistant",
|
| 195 |
+
tools_condition,
|
| 196 |
+
)
|
| 197 |
+
builder.add_edge("tools", "assistant")
|
| 198 |
|
| 199 |
# Compile graph
|
| 200 |
+
return builder.compile()
|
| 201 |
+
|
| 202 |
+
# test
|
| 203 |
+
if __name__ == "__main__":
|
| 204 |
+
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
| 205 |
+
# Build the graph
|
| 206 |
+
graph = build_graph(provider="groq")
|
| 207 |
+
# Run the graph
|
| 208 |
+
messages = [HumanMessage(content=question)]
|
| 209 |
+
messages = graph.invoke({"messages": messages})
|
| 210 |
+
for m in messages["messages"]:
|
| 211 |
+
m.pretty_print()
|
app.py
CHANGED
|
@@ -25,11 +25,11 @@ class BasicAgent:
|
|
| 25 |
|
| 26 |
def __call__(self, question: str) -> str:
|
| 27 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
|
|
|
| 28 |
messages = [HumanMessage(content=question)]
|
| 29 |
-
|
| 30 |
-
answer =
|
| 31 |
-
return answer
|
| 32 |
-
|
| 33 |
|
| 34 |
|
| 35 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
@@ -68,16 +68,16 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 68 |
response.raise_for_status()
|
| 69 |
questions_data = response.json()
|
| 70 |
if not questions_data:
|
| 71 |
-
|
| 72 |
-
|
| 73 |
print(f"Fetched {len(questions_data)} questions.")
|
| 74 |
except requests.exceptions.RequestException as e:
|
| 75 |
print(f"Error fetching questions: {e}")
|
| 76 |
return f"Error fetching questions: {e}", None
|
| 77 |
except requests.exceptions.JSONDecodeError as e:
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
except Exception as e:
|
| 82 |
print(f"An unexpected error occurred fetching questions: {e}")
|
| 83 |
return f"An unexpected error occurred fetching questions: {e}", None
|
|
@@ -97,14 +97,14 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 97 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 98 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 99 |
except Exception as e:
|
| 100 |
-
|
| 101 |
-
|
| 102 |
|
| 103 |
if not answers_payload:
|
| 104 |
print("Agent did not produce any answers to submit.")
|
| 105 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 106 |
|
| 107 |
-
# 4. Prepare Submission
|
| 108 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 109 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 110 |
print(status_update)
|
|
@@ -159,11 +159,9 @@ with gr.Blocks() as demo:
|
|
| 159 |
gr.Markdown(
|
| 160 |
"""
|
| 161 |
**Instructions:**
|
| 162 |
-
|
| 163 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 164 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 165 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 166 |
-
|
| 167 |
---
|
| 168 |
**Disclaimers:**
|
| 169 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
|
|
|
| 25 |
|
| 26 |
def __call__(self, question: str) -> str:
|
| 27 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 28 |
+
# Wrap the question in a HumanMessage from langchain_core
|
| 29 |
messages = [HumanMessage(content=question)]
|
| 30 |
+
messages = self.graph.invoke({"messages": messages})
|
| 31 |
+
answer = messages['messages'][-1].content
|
| 32 |
+
return answer[14:]
|
|
|
|
| 33 |
|
| 34 |
|
| 35 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
|
|
| 68 |
response.raise_for_status()
|
| 69 |
questions_data = response.json()
|
| 70 |
if not questions_data:
|
| 71 |
+
print("Fetched questions list is empty.")
|
| 72 |
+
return "Fetched questions list is empty or invalid format.", None
|
| 73 |
print(f"Fetched {len(questions_data)} questions.")
|
| 74 |
except requests.exceptions.RequestException as e:
|
| 75 |
print(f"Error fetching questions: {e}")
|
| 76 |
return f"Error fetching questions: {e}", None
|
| 77 |
except requests.exceptions.JSONDecodeError as e:
|
| 78 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 79 |
+
print(f"Response text: {response.text[:500]}")
|
| 80 |
+
return f"Error decoding server response for questions: {e}", None
|
| 81 |
except Exception as e:
|
| 82 |
print(f"An unexpected error occurred fetching questions: {e}")
|
| 83 |
return f"An unexpected error occurred fetching questions: {e}", None
|
|
|
|
| 97 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 98 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 99 |
except Exception as e:
|
| 100 |
+
print(f"Error running agent on task {task_id}: {e}")
|
| 101 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 102 |
|
| 103 |
if not answers_payload:
|
| 104 |
print("Agent did not produce any answers to submit.")
|
| 105 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 106 |
|
| 107 |
+
# 4. Prepare Submission
|
| 108 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 109 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 110 |
print(status_update)
|
|
|
|
| 159 |
gr.Markdown(
|
| 160 |
"""
|
| 161 |
**Instructions:**
|
|
|
|
| 162 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 163 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 164 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
|
| 165 |
---
|
| 166 |
**Disclaimers:**
|
| 167 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
requirements.txt
CHANGED
|
@@ -15,6 +15,4 @@ arxiv
|
|
| 15 |
pymupdf
|
| 16 |
wikipedia
|
| 17 |
pgvector
|
| 18 |
-
python-dotenv
|
| 19 |
-
pytesseract
|
| 20 |
-
matplotlib
|
|
|
|
| 15 |
pymupdf
|
| 16 |
wikipedia
|
| 17 |
pgvector
|
| 18 |
+
python-dotenv
|
|
|
|
|
|