Spaces:
Sleeping
Sleeping
Clement Vachet
commited on
Commit
·
375e6f0
1
Parent(s):
a9c685c
Add Lambda handler
Browse files- lambda_function.py +72 -0
lambda_function.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from detection import ml_detection, ml_utils
|
| 2 |
+
import base64
|
| 3 |
+
import json
|
| 4 |
+
import logging
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
logger = logging.getLogger()
|
| 8 |
+
logger.setLevel(logging.INFO)
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# Find ML model type based on string request
|
| 12 |
+
def get_model_type(query_string):
|
| 13 |
+
# Default ml model type
|
| 14 |
+
if query_string == "":
|
| 15 |
+
model_type = "facebook/detr-resnet-50"
|
| 16 |
+
# Assess query string value
|
| 17 |
+
elif "detr" in query_string:
|
| 18 |
+
model_type = "facebook/" + query_string
|
| 19 |
+
elif "yolos" in query_string:
|
| 20 |
+
model_type = "hustvl/" + query_string
|
| 21 |
+
else:
|
| 22 |
+
raise Exception('Incorrect model type.')
|
| 23 |
+
return model_type
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# Run detection pipeline: load ML model, perform object detection and return json object
|
| 27 |
+
def detection_pipeline(model_type, image_bytes):
|
| 28 |
+
# Load correct ML model
|
| 29 |
+
processor, model = ml_detection.load_model(model_type)
|
| 30 |
+
|
| 31 |
+
# Perform object detection
|
| 32 |
+
results = ml_detection.object_detection(processor, model, image_bytes)
|
| 33 |
+
|
| 34 |
+
# Convert dictionary of tensors to JSON object
|
| 35 |
+
result_json_dict = ml_utils.convert_tensor_dict_to_json(results)
|
| 36 |
+
|
| 37 |
+
return result_json_dict
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def lambda_handler(event, context):
|
| 41 |
+
try:
|
| 42 |
+
# Get the model name from the query string parameters
|
| 43 |
+
# Condition for local testing
|
| 44 |
+
is_querystringparam = event.get('queryStringParameters')
|
| 45 |
+
if is_querystringparam is not None:
|
| 46 |
+
model_query = event['queryStringParameters'].get('model', '').lower()
|
| 47 |
+
else:
|
| 48 |
+
model_query = ""
|
| 49 |
+
model_type = get_model_type(model_query)
|
| 50 |
+
logger.info(f"Model query: {model_query}")
|
| 51 |
+
logger.info(f"Model type: {model_type}")
|
| 52 |
+
|
| 53 |
+
# Decode the base64-encoded image data from the event
|
| 54 |
+
image_data = base64.b64decode(event['body'])
|
| 55 |
+
result_dict = detection_pipeline(model_type, image_data)
|
| 56 |
+
logger.info(f"API Results: {result_dict}")
|
| 57 |
+
return {
|
| 58 |
+
'statusCode': 200,
|
| 59 |
+
'headers': {
|
| 60 |
+
'Content-Type': 'application/json'
|
| 61 |
+
},
|
| 62 |
+
'body': json.dumps(result_dict),
|
| 63 |
+
}
|
| 64 |
+
except Exception as e:
|
| 65 |
+
logger.info(f"API Error: {str(e)}")
|
| 66 |
+
return {
|
| 67 |
+
'statusCode': 500,
|
| 68 |
+
'headers': {
|
| 69 |
+
'Content-Type': 'application/json'
|
| 70 |
+
},
|
| 71 |
+
'body': json.dumps({'error': str(e)}),
|
| 72 |
+
}
|