Spaces:
Sleeping
Sleeping
Create model_utils.py
Browse files- model_utils.py +127 -0
model_utils.py
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from transformers import ViTForImageClassification, AutoFeatureExtractor
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import cv2
|
| 7 |
+
from scipy.special import softmax
|
| 8 |
+
|
| 9 |
+
class BugClassifier:
|
| 10 |
+
def __init__(self):
|
| 11 |
+
# Initialize model and feature extractor
|
| 12 |
+
self.model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224")
|
| 13 |
+
self.feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
|
| 14 |
+
|
| 15 |
+
# Define class labels (these would be replaced with your actual trained classes)
|
| 16 |
+
self.labels = [
|
| 17 |
+
"Ladybug", "Butterfly", "Ant", "Beetle", "Spider",
|
| 18 |
+
"Grasshopper", "Moth", "Dragonfly", "Bee", "Wasp"
|
| 19 |
+
]
|
| 20 |
+
|
| 21 |
+
# Species information database
|
| 22 |
+
self.species_info = {
|
| 23 |
+
"Ladybug": """
|
| 24 |
+
Ladybugs are small, round beetles known for their distinctive spotted patterns.
|
| 25 |
+
They are beneficial insects that feed on plant-damaging pests like aphids.
|
| 26 |
+
Fun fact: The number of spots on a ladybug can indicate its species!
|
| 27 |
+
""",
|
| 28 |
+
"Butterfly": """
|
| 29 |
+
Butterflies are beautiful insects known for their large, colorful wings.
|
| 30 |
+
They play a crucial role in pollination and are indicators of ecosystem health.
|
| 31 |
+
They undergo complete metamorphosis from caterpillar to adult.
|
| 32 |
+
""",
|
| 33 |
+
# Add more species information as needed
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
def predict(self, image):
|
| 37 |
+
"""
|
| 38 |
+
Make a prediction on the input image
|
| 39 |
+
Returns predicted class and confidence score
|
| 40 |
+
"""
|
| 41 |
+
# Preprocess image
|
| 42 |
+
if isinstance(image, Image.Image):
|
| 43 |
+
image_tensor = self.preprocess_image(image)
|
| 44 |
+
else:
|
| 45 |
+
raise ValueError("Input must be a PIL Image")
|
| 46 |
+
|
| 47 |
+
# Make prediction
|
| 48 |
+
with torch.no_grad():
|
| 49 |
+
outputs = self.model(image_tensor)
|
| 50 |
+
probs = softmax(outputs.logits.numpy()[0])
|
| 51 |
+
pred_idx = np.argmax(probs)
|
| 52 |
+
|
| 53 |
+
return self.labels[pred_idx], float(probs[pred_idx] * 100)
|
| 54 |
+
|
| 55 |
+
def preprocess_image(self, image):
|
| 56 |
+
"""
|
| 57 |
+
Preprocess image for model input
|
| 58 |
+
"""
|
| 59 |
+
# Resize image if needed
|
| 60 |
+
if image.size != (224, 224):
|
| 61 |
+
image = image.resize((224, 224))
|
| 62 |
+
|
| 63 |
+
# Convert to tensor using feature extractor
|
| 64 |
+
inputs = self.feature_extractor(images=image, return_tensors="pt")
|
| 65 |
+
return inputs.pixel_values
|
| 66 |
+
|
| 67 |
+
def get_species_info(self, species):
|
| 68 |
+
"""
|
| 69 |
+
Return information about a species
|
| 70 |
+
"""
|
| 71 |
+
return self.species_info.get(species, "Information not available for this species.")
|
| 72 |
+
|
| 73 |
+
def compare_species(self, species1, species2):
|
| 74 |
+
"""
|
| 75 |
+
Generate comparison information between two species
|
| 76 |
+
"""
|
| 77 |
+
# This would be expanded with actual comparison logic
|
| 78 |
+
return f"""
|
| 79 |
+
**Comparing {species1} and {species2}:**
|
| 80 |
+
|
| 81 |
+
These species have different characteristics and roles in the ecosystem.
|
| 82 |
+
{self.get_species_info(species1)}
|
| 83 |
+
|
| 84 |
+
{self.get_species_info(species2)}
|
| 85 |
+
"""
|
| 86 |
+
|
| 87 |
+
def generate_gradcam(image, model):
|
| 88 |
+
"""
|
| 89 |
+
Generate Grad-CAM visualization for the image
|
| 90 |
+
"""
|
| 91 |
+
# This is a simplified version - you would need to implement the actual Grad-CAM logic
|
| 92 |
+
# For now, we'll return a simple heatmap overlay
|
| 93 |
+
img_array = np.array(image)
|
| 94 |
+
heatmap = cv2.applyColorMap(
|
| 95 |
+
cv2.resize(np.random.rand(7,7) * 255, (224, 224)).astype(np.uint8),
|
| 96 |
+
cv2.COLORMAP_JET
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
# Overlay heatmap on original image
|
| 100 |
+
overlay = cv2.addWeighted(
|
| 101 |
+
cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR),
|
| 102 |
+
0.7,
|
| 103 |
+
heatmap,
|
| 104 |
+
0.3,
|
| 105 |
+
0
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
return Image.fromarray(cv2.cvtColor(overlay, cv2.COLOR_BGR2RGB))
|
| 109 |
+
|
| 110 |
+
def get_severity_prediction(species):
|
| 111 |
+
"""
|
| 112 |
+
Predict ecological severity/impact based on species
|
| 113 |
+
"""
|
| 114 |
+
# This would be replaced with actual severity prediction logic
|
| 115 |
+
severity_map = {
|
| 116 |
+
"Ladybug": "Low",
|
| 117 |
+
"Butterfly": "Low",
|
| 118 |
+
"Ant": "Medium",
|
| 119 |
+
"Beetle": "Medium",
|
| 120 |
+
"Spider": "Low",
|
| 121 |
+
"Grasshopper": "Medium",
|
| 122 |
+
"Moth": "Low",
|
| 123 |
+
"Dragonfly": "Low",
|
| 124 |
+
"Bee": "Low",
|
| 125 |
+
"Wasp": "Medium"
|
| 126 |
+
}
|
| 127 |
+
return severity_map.get(species, "Medium")
|