Update app.py
Browse files
app.py
CHANGED
|
@@ -62,21 +62,35 @@ def plotly_plot_audio(audio_path):
|
|
| 62 |
"β οΈ Processing Error"
|
| 63 |
)
|
| 64 |
|
| 65 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
with gr.Blocks(theme=gr.themes.Soft(), title="Emotion Detection") as demo:
|
| 67 |
gr.Markdown("# Text-based bilingual emotion recognition")
|
| 68 |
|
| 69 |
with gr.Row():
|
| 70 |
-
|
| 71 |
-
audio_input = gr.Audio(
|
| 72 |
-
sources=["upload", "microphone"],
|
| 73 |
-
type="filepath",
|
| 74 |
-
label="Record or Upload Audio",
|
| 75 |
-
format="wav",
|
| 76 |
-
interactive=True
|
| 77 |
-
)
|
| 78 |
-
with gr.Column():
|
| 79 |
-
text_input = gr.Text(label="Write Text")
|
| 80 |
|
| 81 |
with gr.Row():
|
| 82 |
top_emotion = gr.Markdown("## π Dominant Emotion: Waiting for input ...",
|
|
@@ -85,24 +99,51 @@ def create_demo():
|
|
| 85 |
with gr.Row():
|
| 86 |
text_plot = gr.Plot(label="Text Analysis")
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
transcription = gr.Textbox(
|
| 89 |
label="π Transcription Results",
|
| 90 |
placeholder="Transcribed text will appear here...",
|
| 91 |
lines=3,
|
| 92 |
max_lines=6
|
| 93 |
)
|
| 94 |
-
|
| 95 |
-
if text_input is not None:
|
| 96 |
-
text_input.change(fn=plotly_plot_text, inputs=text_input, outputs=[text_plot, transcription, top_emotion])
|
| 97 |
-
elif audio_input:
|
| 98 |
-
audio_input.change(fn=plotly_plot_audio, inputs=audio_input, outputs=[text_plot, transcription, top_emotion])
|
| 99 |
return demo
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
if __name__ == "__main__":
|
| 103 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 104 |
model = Mamba(num_layers = 2, d_input = 1024, d_model = 512, num_classes=7, model_name='jina', pooling=None).to(device)
|
| 105 |
-
checkpoint = torch.load("Mamba_jina_checkpoint.pth", map_location=torch.device('cpu'))
|
| 106 |
model.load_state_dict(checkpoint['model_state_dict'])
|
|
|
|
| 107 |
demo = create_demo()
|
| 108 |
demo.launch()
|
|
|
|
| 62 |
"β οΈ Processing Error"
|
| 63 |
)
|
| 64 |
|
| 65 |
+
def plotly_plot_audio(audio_path):
|
| 66 |
+
data = pd.DataFrame()
|
| 67 |
+
data['Emotion'] = ['π anger', 'π€’ disgust', 'π¨ fear', 'π joy/happiness', 'π neutral', 'π’ sadness', 'π² surprise/enthusiasm']
|
| 68 |
+
try:
|
| 69 |
+
text = transcribe_audio(audio_path)
|
| 70 |
+
data['Probability'] = model.predict_proba([text])[0].tolist() if text.strip() else [0.0] * data.shape[0]
|
| 71 |
+
p = px.bar(data, x='Emotion', y='Probability', color="Probability")
|
| 72 |
+
return (
|
| 73 |
+
p,
|
| 74 |
+
f"π£οΈ Transcription:\n{text}",
|
| 75 |
+
f"## π Dominant Emotion: {data['Emotion'].values[np.argmax(np.array(data['Probability']))]}"
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
except Exception as e:
|
| 79 |
+
logging.error(f"Processing failed: {e}")
|
| 80 |
+
data['Probability'] = [0] * data.shape[0]
|
| 81 |
+
p = px.bar(data, x='Emotion', y='Probability', color="Probability")
|
| 82 |
+
return (
|
| 83 |
+
p,
|
| 84 |
+
"β Error processing audio",
|
| 85 |
+
"β οΈ Processing Error"
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
def create_demo_text():
|
| 89 |
with gr.Blocks(theme=gr.themes.Soft(), title="Emotion Detection") as demo:
|
| 90 |
gr.Markdown("# Text-based bilingual emotion recognition")
|
| 91 |
|
| 92 |
with gr.Row():
|
| 93 |
+
text_input = gr.Textbox(label="Write Text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
with gr.Row():
|
| 96 |
top_emotion = gr.Markdown("## π Dominant Emotion: Waiting for input ...",
|
|
|
|
| 99 |
with gr.Row():
|
| 100 |
text_plot = gr.Plot(label="Text Analysis")
|
| 101 |
|
| 102 |
+
text_input.change(fn=plotly_plot_text, inputs=text_input, outputs=[text_plot, top_emotion])
|
| 103 |
+
return demo
|
| 104 |
+
|
| 105 |
+
def create_demo_audio():
|
| 106 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Emotion Detection") as demo:
|
| 107 |
+
gr.Markdown("# Text-based bilingual emotion recognition")
|
| 108 |
+
|
| 109 |
+
with gr.Row():
|
| 110 |
+
audio_input = gr.Audio(
|
| 111 |
+
sources=["upload", "microphone"],
|
| 112 |
+
type="filepath",
|
| 113 |
+
label="Record or Upload Audio",
|
| 114 |
+
format="wav",
|
| 115 |
+
interactive=True
|
| 116 |
+
)
|
| 117 |
+
with gr.Row():
|
| 118 |
+
top_emotion = gr.Markdown("## π Dominant Emotion: Waiting for input ...",
|
| 119 |
+
elem_classes="dominant-emotion")
|
| 120 |
+
|
| 121 |
+
with gr.Row():
|
| 122 |
+
text_plot = gr.Plot(label="Text Analysis")
|
| 123 |
+
|
| 124 |
transcription = gr.Textbox(
|
| 125 |
label="π Transcription Results",
|
| 126 |
placeholder="Transcribed text will appear here...",
|
| 127 |
lines=3,
|
| 128 |
max_lines=6
|
| 129 |
)
|
| 130 |
+
audio_input.change(fn=plotly_plot_audio, inputs=audio_input, outputs=[text_plot, transcription, top_emotion])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
return demo
|
| 132 |
|
| 133 |
+
def create_demo():
|
| 134 |
+
text = create_demo_text()
|
| 135 |
+
audio = create_demo_audio()
|
| 136 |
+
demo = gr.TabbedInterface(
|
| 137 |
+
[text, audio],
|
| 138 |
+
["Text Prediction", "Transcribed Audio Prediction"],
|
| 139 |
+
)
|
| 140 |
+
return demo
|
| 141 |
+
|
| 142 |
|
| 143 |
if __name__ == "__main__":
|
|
|
|
| 144 |
model = Mamba(num_layers = 2, d_input = 1024, d_model = 512, num_classes=7, model_name='jina', pooling=None).to(device)
|
| 145 |
+
checkpoint = torch.load("models/Mamba_jina_checkpoint.pth", map_location=torch.device('cpu'))
|
| 146 |
model.load_state_dict(checkpoint['model_state_dict'])
|
| 147 |
+
|
| 148 |
demo = create_demo()
|
| 149 |
demo.launch()
|