Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,44 +7,41 @@ import torchaudio
|
|
| 7 |
import gradio as gr
|
| 8 |
import tempfile
|
| 9 |
|
| 10 |
-
|
|
|
|
| 11 |
|
|
|
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained(llasa_3b)
|
| 13 |
|
| 14 |
model = AutoModelForCausalLM.from_pretrained(
|
| 15 |
llasa_3b,
|
| 16 |
trust_remote_code=True,
|
| 17 |
-
device_map=
|
| 18 |
)
|
| 19 |
|
| 20 |
model_path = "srinivasbilla/xcodec2"
|
| 21 |
-
|
| 22 |
Codec_model = XCodec2Model.from_pretrained(model_path)
|
| 23 |
-
Codec_model.eval().
|
| 24 |
|
| 25 |
whisper_turbo_pipe = pipeline(
|
| 26 |
"automatic-speech-recognition",
|
| 27 |
model="openai/whisper-large-v3-turbo",
|
| 28 |
-
torch_dtype=torch.float16,
|
| 29 |
-
device=
|
| 30 |
)
|
| 31 |
|
| 32 |
def ids_to_speech_tokens(speech_ids):
|
| 33 |
-
|
| 34 |
-
speech_tokens_str = []
|
| 35 |
-
for speech_id in speech_ids:
|
| 36 |
-
speech_tokens_str.append(f"<|s_{speech_id}|>")
|
| 37 |
-
return speech_tokens_str
|
| 38 |
|
| 39 |
def extract_speech_ids(speech_tokens_str):
|
| 40 |
-
|
| 41 |
speech_ids = []
|
| 42 |
for token_str in speech_tokens_str:
|
| 43 |
if token_str.startswith('<|s_') and token_str.endswith('|>'):
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
| 48 |
else:
|
| 49 |
print(f"Unexpected token: {token_str}")
|
| 50 |
return speech_ids
|
|
@@ -54,20 +51,19 @@ def infer(sample_audio_path, target_text, progress=gr.Progress()):
|
|
| 54 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
| 55 |
progress(0, 'Loading and trimming audio...')
|
| 56 |
waveform, sample_rate = torchaudio.load(sample_audio_path)
|
| 57 |
-
if len(waveform[0])/sample_rate > 15:
|
| 58 |
-
gr.Warning("Trimming audio to first 15secs.")
|
| 59 |
-
waveform = waveform[:, :sample_rate*15]
|
| 60 |
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
| 62 |
if waveform.size(0) > 1:
|
| 63 |
-
# Convert stereo to mono by averaging the channels
|
| 64 |
waveform_mono = torch.mean(waveform, dim=0, keepdim=True)
|
| 65 |
else:
|
| 66 |
-
# If already mono, just use the original waveform
|
| 67 |
waveform_mono = waveform
|
| 68 |
|
| 69 |
prompt_wav = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform_mono)
|
| 70 |
prompt_text = whisper_turbo_pipe(prompt_wav[0].numpy())['text'].strip()
|
|
|
|
| 71 |
progress(0.5, 'Transcribed! Generating speech...')
|
| 72 |
|
| 73 |
if len(target_text) == 0:
|
|
@@ -75,86 +71,65 @@ def infer(sample_audio_path, target_text, progress=gr.Progress()):
|
|
| 75 |
elif len(target_text) > 300:
|
| 76 |
gr.Warning("Text is too long. Please keep it under 300 characters.")
|
| 77 |
target_text = target_text[:300]
|
| 78 |
-
|
| 79 |
input_text = prompt_text + ' ' + target_text
|
| 80 |
|
| 81 |
-
#TTS start!
|
| 82 |
with torch.no_grad():
|
| 83 |
-
# Encode the prompt wav
|
| 84 |
vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav)
|
| 85 |
-
|
| 86 |
-
vq_code_prompt = vq_code_prompt[0,0,:]
|
| 87 |
-
# Convert int 12345 to token <|s_12345|>
|
| 88 |
speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt)
|
| 89 |
|
| 90 |
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
|
| 91 |
-
|
| 92 |
-
# Tokenize the text and the speech prefix
|
| 93 |
chat = [
|
| 94 |
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
|
| 95 |
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)}
|
| 96 |
]
|
| 97 |
|
| 98 |
input_ids = tokenizer.apply_chat_template(
|
| 99 |
-
chat,
|
| 100 |
-
tokenize=True,
|
| 101 |
-
return_tensors='pt',
|
| 102 |
continue_final_message=True
|
| 103 |
-
)
|
| 104 |
-
|
| 105 |
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
|
| 106 |
|
| 107 |
-
# Generate the speech autoregressively
|
| 108 |
outputs = model.generate(
|
| 109 |
input_ids,
|
| 110 |
-
max_length=2048,
|
| 111 |
-
eos_token_id=
|
| 112 |
do_sample=True,
|
| 113 |
-
top_p=1,
|
| 114 |
temperature=0.8
|
| 115 |
)
|
| 116 |
-
# Extract the speech tokens
|
| 117 |
-
generated_ids = outputs[0][input_ids.shape[1]-len(speech_ids_prefix):-1]
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
# Convert token <|s_23456|> to int 23456
|
| 122 |
speech_tokens = extract_speech_ids(speech_tokens)
|
| 123 |
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
gen_wav = Codec_model.decode_code(speech_tokens)
|
| 128 |
-
|
| 129 |
-
# if only need the generated part
|
| 130 |
-
gen_wav = gen_wav[:,:,prompt_wav.shape[1]:]
|
| 131 |
|
| 132 |
progress(1, 'Synthesized!')
|
| 133 |
-
|
| 134 |
-
return (16000, gen_wav[0, 0, :].cpu().numpy())
|
| 135 |
|
| 136 |
with gr.Blocks() as app_tts:
|
| 137 |
gr.Markdown("# Zero Shot Voice Clone TTS")
|
| 138 |
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
|
| 139 |
gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
|
| 140 |
-
|
| 141 |
generate_btn = gr.Button("Synthesize", variant="primary")
|
| 142 |
-
|
| 143 |
audio_output = gr.Audio(label="Synthesized Audio")
|
| 144 |
|
| 145 |
generate_btn.click(
|
| 146 |
infer,
|
| 147 |
-
inputs=[
|
| 148 |
-
ref_audio_input,
|
| 149 |
-
gen_text_input,
|
| 150 |
-
],
|
| 151 |
outputs=[audio_output],
|
| 152 |
)
|
| 153 |
|
| 154 |
with gr.Blocks() as app_credits:
|
| 155 |
gr.Markdown("""
|
| 156 |
# Credits
|
| 157 |
-
|
| 158 |
* [zhenye234](https://github.com/zhenye234) for the original [repo](https://github.com/zhenye234/LLaSA_training)
|
| 159 |
* [mrfakename](https://huggingface.co/mrfakename) for the [gradio demo code](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
|
| 160 |
""")
|
|
@@ -163,15 +138,11 @@ with gr.Blocks() as app:
|
|
| 163 |
gr.Markdown(
|
| 164 |
"""
|
| 165 |
# llasa 3b TTS
|
| 166 |
-
|
| 167 |
This is a local web UI for llasa 3b SOTA(imo) Zero Shot Voice Cloning and TTS model.
|
| 168 |
-
|
| 169 |
The checkpoints support English and Chinese.
|
| 170 |
-
|
| 171 |
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
|
| 172 |
"""
|
| 173 |
)
|
| 174 |
gr.TabbedInterface([app_tts], ["TTS"])
|
| 175 |
|
| 176 |
-
|
| 177 |
-
app.launch(ssr_mode=False)
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
import tempfile
|
| 9 |
|
| 10 |
+
# ✅ 自动选择设备(GPU 优先)
|
| 11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
|
| 13 |
+
llasa_3b = 'srinivasbilla/llasa-3b'
|
| 14 |
tokenizer = AutoTokenizer.from_pretrained(llasa_3b)
|
| 15 |
|
| 16 |
model = AutoModelForCausalLM.from_pretrained(
|
| 17 |
llasa_3b,
|
| 18 |
trust_remote_code=True,
|
| 19 |
+
device_map=device,
|
| 20 |
)
|
| 21 |
|
| 22 |
model_path = "srinivasbilla/xcodec2"
|
|
|
|
| 23 |
Codec_model = XCodec2Model.from_pretrained(model_path)
|
| 24 |
+
Codec_model.eval().to(device)
|
| 25 |
|
| 26 |
whisper_turbo_pipe = pipeline(
|
| 27 |
"automatic-speech-recognition",
|
| 28 |
model="openai/whisper-large-v3-turbo",
|
| 29 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 30 |
+
device=0 if device == "cuda" else -1,
|
| 31 |
)
|
| 32 |
|
| 33 |
def ids_to_speech_tokens(speech_ids):
|
| 34 |
+
return [f"<|s_{sid}|>" for sid in speech_ids]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
def extract_speech_ids(speech_tokens_str):
|
|
|
|
| 37 |
speech_ids = []
|
| 38 |
for token_str in speech_tokens_str:
|
| 39 |
if token_str.startswith('<|s_') and token_str.endswith('|>'):
|
| 40 |
+
try:
|
| 41 |
+
num = int(token_str[4:-2])
|
| 42 |
+
speech_ids.append(num)
|
| 43 |
+
except ValueError:
|
| 44 |
+
print(f"Invalid token format: {token_str}")
|
| 45 |
else:
|
| 46 |
print(f"Unexpected token: {token_str}")
|
| 47 |
return speech_ids
|
|
|
|
| 51 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
| 52 |
progress(0, 'Loading and trimming audio...')
|
| 53 |
waveform, sample_rate = torchaudio.load(sample_audio_path)
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
if len(waveform[0]) / sample_rate > 15:
|
| 56 |
+
gr.Warning("Trimming audio to first 15 seconds.")
|
| 57 |
+
waveform = waveform[:, :sample_rate * 15]
|
| 58 |
+
|
| 59 |
if waveform.size(0) > 1:
|
|
|
|
| 60 |
waveform_mono = torch.mean(waveform, dim=0, keepdim=True)
|
| 61 |
else:
|
|
|
|
| 62 |
waveform_mono = waveform
|
| 63 |
|
| 64 |
prompt_wav = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform_mono)
|
| 65 |
prompt_text = whisper_turbo_pipe(prompt_wav[0].numpy())['text'].strip()
|
| 66 |
+
|
| 67 |
progress(0.5, 'Transcribed! Generating speech...')
|
| 68 |
|
| 69 |
if len(target_text) == 0:
|
|
|
|
| 71 |
elif len(target_text) > 300:
|
| 72 |
gr.Warning("Text is too long. Please keep it under 300 characters.")
|
| 73 |
target_text = target_text[:300]
|
| 74 |
+
|
| 75 |
input_text = prompt_text + ' ' + target_text
|
| 76 |
|
|
|
|
| 77 |
with torch.no_grad():
|
|
|
|
| 78 |
vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav)
|
| 79 |
+
vq_code_prompt = vq_code_prompt[0, 0, :]
|
|
|
|
|
|
|
| 80 |
speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt)
|
| 81 |
|
| 82 |
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
|
|
|
|
|
|
|
| 83 |
chat = [
|
| 84 |
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
|
| 85 |
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)}
|
| 86 |
]
|
| 87 |
|
| 88 |
input_ids = tokenizer.apply_chat_template(
|
| 89 |
+
chat,
|
| 90 |
+
tokenize=True,
|
| 91 |
+
return_tensors='pt',
|
| 92 |
continue_final_message=True
|
| 93 |
+
).to(device)
|
| 94 |
+
|
| 95 |
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
|
| 96 |
|
|
|
|
| 97 |
outputs = model.generate(
|
| 98 |
input_ids,
|
| 99 |
+
max_length=2048,
|
| 100 |
+
eos_token_id=speech_end_id,
|
| 101 |
do_sample=True,
|
| 102 |
+
top_p=1,
|
| 103 |
temperature=0.8
|
| 104 |
)
|
|
|
|
|
|
|
| 105 |
|
| 106 |
+
generated_ids = outputs[0][input_ids.shape[1] - len(speech_ids_prefix):-1]
|
| 107 |
+
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
|
|
|
| 108 |
speech_tokens = extract_speech_ids(speech_tokens)
|
| 109 |
|
| 110 |
+
speech_tensor = torch.tensor(speech_tokens).to(device).unsqueeze(0).unsqueeze(0)
|
| 111 |
+
gen_wav = Codec_model.decode_code(speech_tensor)
|
| 112 |
+
gen_wav = gen_wav[:, :, prompt_wav.shape[1]:]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
progress(1, 'Synthesized!')
|
| 115 |
+
return (16000, gen_wav[0, 0, :].cpu().numpy())
|
|
|
|
| 116 |
|
| 117 |
with gr.Blocks() as app_tts:
|
| 118 |
gr.Markdown("# Zero Shot Voice Clone TTS")
|
| 119 |
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
|
| 120 |
gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
|
|
|
|
| 121 |
generate_btn = gr.Button("Synthesize", variant="primary")
|
|
|
|
| 122 |
audio_output = gr.Audio(label="Synthesized Audio")
|
| 123 |
|
| 124 |
generate_btn.click(
|
| 125 |
infer,
|
| 126 |
+
inputs=[ref_audio_input, gen_text_input],
|
|
|
|
|
|
|
|
|
|
| 127 |
outputs=[audio_output],
|
| 128 |
)
|
| 129 |
|
| 130 |
with gr.Blocks() as app_credits:
|
| 131 |
gr.Markdown("""
|
| 132 |
# Credits
|
|
|
|
| 133 |
* [zhenye234](https://github.com/zhenye234) for the original [repo](https://github.com/zhenye234/LLaSA_training)
|
| 134 |
* [mrfakename](https://huggingface.co/mrfakename) for the [gradio demo code](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
|
| 135 |
""")
|
|
|
|
| 138 |
gr.Markdown(
|
| 139 |
"""
|
| 140 |
# llasa 3b TTS
|
|
|
|
| 141 |
This is a local web UI for llasa 3b SOTA(imo) Zero Shot Voice Cloning and TTS model.
|
|
|
|
| 142 |
The checkpoints support English and Chinese.
|
|
|
|
| 143 |
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
|
| 144 |
"""
|
| 145 |
)
|
| 146 |
gr.TabbedInterface([app_tts], ["TTS"])
|
| 147 |
|
| 148 |
+
app.launch(ssr_mode=False)
|
|
|