Update app.py
Browse files
app.py
CHANGED
|
@@ -4,7 +4,6 @@ import torch
|
|
| 4 |
import numpy as np
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
from PIL import Image
|
| 7 |
-
import torchvision.transforms as transforms
|
| 8 |
import requests
|
| 9 |
import io
|
| 10 |
import matplotlib.colors as mcolors
|
|
@@ -17,27 +16,49 @@ from rasterio.plot import reshape_as_image
|
|
| 17 |
import warnings
|
| 18 |
warnings.filterwarnings("ignore")
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
# Set device
|
| 21 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 22 |
print(f"Using device: {device}")
|
| 23 |
|
| 24 |
-
# Define a custom DeepLabV3+ model that matches your trained model architecture
|
| 25 |
-
class DeepLabV3Plus(torch.nn.Module):
|
| 26 |
-
def __init__(self, num_classes=2):
|
| 27 |
-
super(DeepLabV3Plus, self).__init__()
|
| 28 |
-
self.encoder = torch.nn.Sequential() # ResNet backbone
|
| 29 |
-
self.decoder = torch.nn.Sequential() # Decoder modules
|
| 30 |
-
self.segmentation_head = torch.nn.Conv2d(256, num_classes, kernel_size=1)
|
| 31 |
-
|
| 32 |
-
def forward(self, x):
|
| 33 |
-
# Forward pass (simplified since we're only using this for loading weights)
|
| 34 |
-
features = self.encoder(x)
|
| 35 |
-
decoder_output = self.decoder(features)
|
| 36 |
-
masks = self.segmentation_head(decoder_output)
|
| 37 |
-
return masks
|
| 38 |
-
|
| 39 |
# Initialize the model
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
# Download model weights from HuggingFace
|
| 43 |
MODEL_REPO = "dcrey7/wetlands_segmentation_deeplabsv3plus"
|
|
@@ -64,31 +85,25 @@ def download_model_weights():
|
|
| 64 |
print(f"Error downloading model weights: {e}")
|
| 65 |
return None
|
| 66 |
|
| 67 |
-
# Dummy model for testing if model weights can't be loaded
|
| 68 |
-
class DummyModel(torch.nn.Module):
|
| 69 |
-
def __init__(self):
|
| 70 |
-
super(DummyModel, self).__init__()
|
| 71 |
-
|
| 72 |
-
def forward(self, x):
|
| 73 |
-
# Simply return a random segmentation mask for visualization
|
| 74 |
-
batch_size, _, height, width = x.shape
|
| 75 |
-
return torch.randint(0, 2, (batch_size, 2, height, width), device=x.device).float()
|
| 76 |
-
|
| 77 |
# Load the model weights
|
| 78 |
weights_path = download_model_weights()
|
| 79 |
if weights_path:
|
| 80 |
try:
|
| 81 |
-
# Try to load
|
| 82 |
state_dict = torch.load(weights_path, map_location=device)
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
except Exception as e:
|
| 86 |
print(f"Error loading model weights: {e}")
|
| 87 |
-
print("Using dummy model for demo purposes")
|
| 88 |
-
model = DummyModel()
|
| 89 |
else:
|
| 90 |
-
print("No weights available.
|
| 91 |
-
model = DummyModel()
|
| 92 |
|
| 93 |
model.to(device)
|
| 94 |
model.eval()
|
|
@@ -167,8 +182,22 @@ def preprocess_mask(mask, target_size=(128, 128)):
|
|
| 167 |
"""
|
| 168 |
Preprocess a ground truth mask
|
| 169 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
# Convert to numpy array if PIL image
|
| 171 |
-
|
| 172 |
mask = np.array(mask)
|
| 173 |
|
| 174 |
# Convert to grayscale if needed
|
|
@@ -193,22 +222,18 @@ def predict_segmentation(image_tensor):
|
|
| 193 |
with torch.no_grad():
|
| 194 |
output = model(image_tensor)
|
| 195 |
|
| 196 |
-
#
|
| 197 |
-
|
| 198 |
-
if isinstance(output, dict) and 'out' in output:
|
| 199 |
output = output['out']
|
| 200 |
-
|
| 201 |
-
if output.shape[1] > 1: # If output has multiple channels (classes)
|
| 202 |
pred = torch.argmax(output, dim=1).squeeze(0).cpu().numpy()
|
| 203 |
-
else:
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
return pred
|
| 208 |
except Exception as e:
|
| 209 |
print(f"Error during prediction: {e}")
|
| 210 |
-
|
| 211 |
-
return np.random.randint(0, 2, (128, 128), dtype=np.uint8)
|
| 212 |
|
| 213 |
def calculate_metrics(pred_mask, gt_mask):
|
| 214 |
"""
|
|
@@ -245,29 +270,6 @@ def calculate_metrics(pred_mask, gt_mask):
|
|
| 245 |
|
| 246 |
return metrics
|
| 247 |
|
| 248 |
-
def save_uploaded_file(file_obj):
|
| 249 |
-
"""Save an uploaded file to a temporary location and return the path"""
|
| 250 |
-
try:
|
| 251 |
-
# Create a temporary file
|
| 252 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.tif')
|
| 253 |
-
temp_path = temp_file.name
|
| 254 |
-
|
| 255 |
-
# Write the content to the file
|
| 256 |
-
if hasattr(file_obj, 'name'):
|
| 257 |
-
# If it's a FileUpload object from gradio
|
| 258 |
-
with open(file_obj.name, 'rb') as f:
|
| 259 |
-
content = f.read()
|
| 260 |
-
temp_file.write(content)
|
| 261 |
-
else:
|
| 262 |
-
# If it's binary content
|
| 263 |
-
temp_file.write(file_obj)
|
| 264 |
-
|
| 265 |
-
temp_file.close()
|
| 266 |
-
return temp_path
|
| 267 |
-
except Exception as e:
|
| 268 |
-
print(f"Error saving uploaded file: {e}")
|
| 269 |
-
return None
|
| 270 |
-
|
| 271 |
def process_images(input_image=None, input_tiff=None, gt_mask=None):
|
| 272 |
"""
|
| 273 |
Process input images and generate predictions
|
|
@@ -279,10 +281,18 @@ def process_images(input_image=None, input_tiff=None, gt_mask=None):
|
|
| 279 |
|
| 280 |
# Process the input image
|
| 281 |
if input_tiff is not None:
|
| 282 |
-
#
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
|
| 287 |
# Process TIFF file
|
| 288 |
image_tensor, display_image = preprocess_tiff(temp_tiff_path)
|
|
@@ -308,9 +318,28 @@ def process_images(input_image=None, input_tiff=None, gt_mask=None):
|
|
| 308 |
metrics_text = ""
|
| 309 |
|
| 310 |
if gt_mask is not None:
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
|
| 315 |
# Create visualization
|
| 316 |
fig = plt.figure(figsize=(12, 6))
|
|
@@ -362,10 +391,9 @@ def process_images(input_image=None, input_tiff=None, gt_mask=None):
|
|
| 362 |
return result_image, result_text
|
| 363 |
|
| 364 |
except Exception as e:
|
| 365 |
-
import traceback
|
| 366 |
-
trace = traceback.format_exc()
|
| 367 |
print(f"Error in processing: {e}")
|
| 368 |
-
|
|
|
|
| 369 |
return None, f"Error: {str(e)}"
|
| 370 |
|
| 371 |
# Create Gradio interface
|
|
@@ -399,7 +427,7 @@ with gr.Blocks(title="Wetlands Segmentation from Satellite Imagery") as demo:
|
|
| 399 |
This application uses a DeepLabv3+ model trained to segment wetland areas in satellite imagery.
|
| 400 |
|
| 401 |
**Model Details:**
|
| 402 |
-
- Architecture: DeepLabv3+ with ResNet-
|
| 403 |
- Input: RGB satellite imagery
|
| 404 |
- Output: Binary segmentation mask (Wetland vs Background)
|
| 405 |
- Resolution: 128×128 pixels
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
from PIL import Image
|
|
|
|
| 7 |
import requests
|
| 8 |
import io
|
| 9 |
import matplotlib.colors as mcolors
|
|
|
|
| 16 |
import warnings
|
| 17 |
warnings.filterwarnings("ignore")
|
| 18 |
|
| 19 |
+
# Try to import segmentation_models_pytorch
|
| 20 |
+
try:
|
| 21 |
+
import segmentation_models_pytorch as smp
|
| 22 |
+
smp_available = True
|
| 23 |
+
print("Successfully imported segmentation_models_pytorch")
|
| 24 |
+
except ImportError:
|
| 25 |
+
smp_available = False
|
| 26 |
+
print("Warning: segmentation_models_pytorch not available, will try to install it")
|
| 27 |
+
import subprocess
|
| 28 |
+
try:
|
| 29 |
+
subprocess.check_call([
|
| 30 |
+
"pip", "install", "segmentation-models-pytorch"
|
| 31 |
+
])
|
| 32 |
+
import segmentation_models_pytorch as smp
|
| 33 |
+
smp_available = True
|
| 34 |
+
print("Successfully installed and imported segmentation_models_pytorch")
|
| 35 |
+
except:
|
| 36 |
+
print("Failed to install segmentation_models_pytorch")
|
| 37 |
+
|
| 38 |
# Set device
|
| 39 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 40 |
print(f"Using device: {device}")
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
# Initialize the model
|
| 43 |
+
if smp_available:
|
| 44 |
+
# Define the DeepLabV3+ model using smp
|
| 45 |
+
model = smp.DeepLabV3Plus(
|
| 46 |
+
encoder_name="resnet34", # Using ResNet34 backbone as in your training
|
| 47 |
+
encoder_weights=None, # We'll load your custom weights
|
| 48 |
+
in_channels=3, # RGB input
|
| 49 |
+
classes=1, # Binary segmentation
|
| 50 |
+
)
|
| 51 |
+
else:
|
| 52 |
+
# Fallback to a simple model that won't actually work but allows the UI to load
|
| 53 |
+
print("Warning: Using a placeholder model that won't produce correct predictions.")
|
| 54 |
+
from torch import nn
|
| 55 |
+
class PlaceholderModel(nn.Module):
|
| 56 |
+
def __init__(self):
|
| 57 |
+
super().__init__()
|
| 58 |
+
self.conv = nn.Conv2d(3, 1, 3, padding=1)
|
| 59 |
+
def forward(self, x):
|
| 60 |
+
return self.conv(x)
|
| 61 |
+
model = PlaceholderModel()
|
| 62 |
|
| 63 |
# Download model weights from HuggingFace
|
| 64 |
MODEL_REPO = "dcrey7/wetlands_segmentation_deeplabsv3plus"
|
|
|
|
| 85 |
print(f"Error downloading model weights: {e}")
|
| 86 |
return None
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
# Load the model weights
|
| 89 |
weights_path = download_model_weights()
|
| 90 |
if weights_path:
|
| 91 |
try:
|
| 92 |
+
# Try to load with strict=False to allow for some parameter mismatches
|
| 93 |
state_dict = torch.load(weights_path, map_location=device)
|
| 94 |
+
# Check if we need to modify the state dict keys
|
| 95 |
+
if all(key.startswith('encoder.') or key.startswith('decoder.') for key in list(state_dict.keys())[:5]):
|
| 96 |
+
print("Model weights use encoder/decoder format, loading directly")
|
| 97 |
+
model.load_state_dict(state_dict, strict=False)
|
| 98 |
+
else:
|
| 99 |
+
print("Attempting to adapt state dict to match model architecture")
|
| 100 |
+
# This is a placeholder for state dict adaptation if needed
|
| 101 |
+
model.load_state_dict(state_dict, strict=False)
|
| 102 |
+
print("Model weights loaded successfully")
|
| 103 |
except Exception as e:
|
| 104 |
print(f"Error loading model weights: {e}")
|
|
|
|
|
|
|
| 105 |
else:
|
| 106 |
+
print("No weights available. Model will not produce valid predictions.")
|
|
|
|
| 107 |
|
| 108 |
model.to(device)
|
| 109 |
model.eval()
|
|
|
|
| 182 |
"""
|
| 183 |
Preprocess a ground truth mask
|
| 184 |
"""
|
| 185 |
+
# If mask is a file path (string), open it
|
| 186 |
+
if isinstance(mask, str):
|
| 187 |
+
try:
|
| 188 |
+
# Try to open as a TIFF file with rasterio
|
| 189 |
+
with rasterio.open(mask) as src:
|
| 190 |
+
mask_array = src.read(1) # Read first band
|
| 191 |
+
mask = mask_array
|
| 192 |
+
except:
|
| 193 |
+
# Fall back to opening with PIL
|
| 194 |
+
try:
|
| 195 |
+
mask = np.array(Image.open(mask))
|
| 196 |
+
except Exception as e:
|
| 197 |
+
print(f"Error reading mask file: {e}")
|
| 198 |
+
return None
|
| 199 |
# Convert to numpy array if PIL image
|
| 200 |
+
elif isinstance(mask, Image.Image):
|
| 201 |
mask = np.array(mask)
|
| 202 |
|
| 203 |
# Convert to grayscale if needed
|
|
|
|
| 222 |
with torch.no_grad():
|
| 223 |
output = model(image_tensor)
|
| 224 |
|
| 225 |
+
# Handle different model output formats
|
| 226 |
+
if isinstance(output, dict):
|
|
|
|
| 227 |
output = output['out']
|
| 228 |
+
if output.shape[1] > 1: # Multi-class output
|
|
|
|
| 229 |
pred = torch.argmax(output, dim=1).squeeze(0).cpu().numpy()
|
| 230 |
+
else: # Binary output (from smp models)
|
| 231 |
+
pred = (torch.sigmoid(output) > 0.5).squeeze().cpu().numpy().astype(np.uint8)
|
| 232 |
+
|
|
|
|
| 233 |
return pred
|
| 234 |
except Exception as e:
|
| 235 |
print(f"Error during prediction: {e}")
|
| 236 |
+
return None
|
|
|
|
| 237 |
|
| 238 |
def calculate_metrics(pred_mask, gt_mask):
|
| 239 |
"""
|
|
|
|
| 270 |
|
| 271 |
return metrics
|
| 272 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
def process_images(input_image=None, input_tiff=None, gt_mask=None):
|
| 274 |
"""
|
| 275 |
Process input images and generate predictions
|
|
|
|
| 281 |
|
| 282 |
# Process the input image
|
| 283 |
if input_tiff is not None:
|
| 284 |
+
# Create a temporary file for the uploaded TIFF
|
| 285 |
+
with tempfile.NamedTemporaryFile(suffix='.tif', delete=False) as temp_tiff:
|
| 286 |
+
temp_tiff_path = temp_tiff.name
|
| 287 |
+
|
| 288 |
+
# Write the file content to the temporary file
|
| 289 |
+
if isinstance(input_tiff, str):
|
| 290 |
+
# If input_tiff is a path
|
| 291 |
+
with open(input_tiff, 'rb') as f:
|
| 292 |
+
temp_tiff.write(f.read())
|
| 293 |
+
else:
|
| 294 |
+
# If input_tiff is file-like object or bytes
|
| 295 |
+
temp_tiff.write(input_tiff)
|
| 296 |
|
| 297 |
# Process TIFF file
|
| 298 |
image_tensor, display_image = preprocess_tiff(temp_tiff_path)
|
|
|
|
| 318 |
metrics_text = ""
|
| 319 |
|
| 320 |
if gt_mask is not None:
|
| 321 |
+
# If gt_mask is a file upload
|
| 322 |
+
if isinstance(gt_mask, (str, bytes)):
|
| 323 |
+
# Create a temporary file for the mask
|
| 324 |
+
with tempfile.NamedTemporaryFile(suffix='.tif', delete=False) as temp_mask:
|
| 325 |
+
temp_mask_path = temp_mask.name
|
| 326 |
+
if isinstance(gt_mask, str):
|
| 327 |
+
with open(gt_mask, 'rb') as f:
|
| 328 |
+
temp_mask.write(f.read())
|
| 329 |
+
else:
|
| 330 |
+
temp_mask.write(gt_mask)
|
| 331 |
+
gt_mask_processed = preprocess_mask(temp_mask_path)
|
| 332 |
+
try:
|
| 333 |
+
os.unlink(temp_mask_path)
|
| 334 |
+
except:
|
| 335 |
+
pass
|
| 336 |
+
else:
|
| 337 |
+
# Normal image upload
|
| 338 |
+
gt_mask_processed = preprocess_mask(gt_mask)
|
| 339 |
+
|
| 340 |
+
if gt_mask_processed is not None:
|
| 341 |
+
metrics = calculate_metrics(pred_mask, gt_mask_processed)
|
| 342 |
+
metrics_text = "\n".join([f"{k}: {v:.4f}" for k, v in metrics.items()])
|
| 343 |
|
| 344 |
# Create visualization
|
| 345 |
fig = plt.figure(figsize=(12, 6))
|
|
|
|
| 391 |
return result_image, result_text
|
| 392 |
|
| 393 |
except Exception as e:
|
|
|
|
|
|
|
| 394 |
print(f"Error in processing: {e}")
|
| 395 |
+
import traceback
|
| 396 |
+
traceback.print_exc()
|
| 397 |
return None, f"Error: {str(e)}"
|
| 398 |
|
| 399 |
# Create Gradio interface
|
|
|
|
| 427 |
This application uses a DeepLabv3+ model trained to segment wetland areas in satellite imagery.
|
| 428 |
|
| 429 |
**Model Details:**
|
| 430 |
+
- Architecture: DeepLabv3+ with ResNet-34
|
| 431 |
- Input: RGB satellite imagery
|
| 432 |
- Output: Binary segmentation mask (Wetland vs Background)
|
| 433 |
- Resolution: 128×128 pixels
|