Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import pipeline | |
| from datasets import load_dataset, Dataset | |
| from huggingface_hub import HfApi, notebook_login | |
| import os | |
| import pandas as pd | |
| # Initialize detector | |
| detector = pipeline("text-classification", model="debojit01/fake-review-detector") | |
| # Hugging Face Dataset setup | |
| HF_DATASET = "debojit01/fake-review-dataset" | |
| TOKEN = os.environ.get("HF_TOKEN") # Set this in Space secrets | |
| def predict(text): | |
| result = detector(text)[0] | |
| if result["label"] == "LABEL_0": # Real | |
| return {"Real": result["score"], "Fake": 1 - result["score"]} | |
| else: # Fake (LABEL_1) | |
| return {"Real": 1 - result["score"], "Fake": result["score"]} | |
| def save_feedback(text, prediction, is_correct): | |
| """Save feedback to HF dataset""" | |
| try: | |
| # Load existing dataset | |
| dataset = load_dataset(HF_DATASET)['train'] | |
| df = dataset.to_pandas() | |
| except: | |
| df = pd.DataFrame(columns=["text", "label"]) | |
| # Determine correct label | |
| predicted_label = "Real" if prediction["Real"] > 0.5 else "Fake" | |
| true_label = predicted_label if is_correct else ("Fake" if predicted_label == "Real" else "Real") | |
| # Append new data | |
| new_row = {"text": text, "label": true_label} | |
| df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True) | |
| # Convert back to dataset and push | |
| updated_dataset = Dataset.from_pandas(df) | |
| updated_dataset.push_to_hub( | |
| HF_DATASET, | |
| token=TOKEN, | |
| commit_message=f"New feedback added via app" | |
| ) | |
| return "Feedback saved to dataset!" | |
| with gr.Blocks() as app: | |
| gr.Markdown("## Fake Review Detector") | |
| with gr.Row(): | |
| review_input = gr.Textbox(label="Enter Review") | |
| predict_btn = gr.Button("Predict") | |
| output_label = gr.Label(label="Prediction") | |
| with gr.Row(visible=False) as feedback_row: | |
| feedback_radio = gr.Radio( | |
| ["Correct", "Incorrect"], | |
| label="Is this prediction accurate?" | |
| ) | |
| feedback_btn = gr.Button("Submit Feedback") | |
| status_text = gr.Textbox(label="Status", interactive=False) | |
| def show_prediction(text): | |
| prediction = predict(text) | |
| return prediction, gr.Row(visible=True), "" | |
| predict_btn.click( | |
| show_prediction, | |
| inputs=review_input, | |
| outputs=[output_label, feedback_row, status_text] | |
| ) | |
| feedback_btn.click( | |
| save_feedback, | |
| inputs=[review_input, output_label, feedback_radio], | |
| outputs=status_text | |
| ) | |
| app.launch() |