# app.py — Insurance Q&A (RAG) with system prompt + simple config import os import gradio as gr from pinecone import Pinecone, ServerlessSpec from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, StorageContext, Settings from llama_index.vector_stores.pinecone import PineconeVectorStore from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI # --- System Prompt (polite + answer-from-document constraint) --- SYSTEM_PROMPT = """You are Aisha, a polite and professional Insurance assistant. Answer ONLY using the information found in the indexed insurance document(s). If the answer is not in the document(s), say: "I couldn’t find that in the document." Keep responses concise, helpful, and courteous. """ # ===== Minimal CONFIG (only necessary keys) ===== PINECONE_API_KEY = os.getenv("PINECONE_API_KEY") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") if not PINECONE_API_KEY or not OPENAI_API_KEY: raise RuntimeError("Missing PINECONE_API_KEY or OPENAI_API_KEY (set them in Space → Settings → Variables).") DATA_DIR = "data" # Put insurance docs here (e.g., data/insurance.pdf) LOGO_PATH = os.path.join(DATA_DIR, "dds_logo.png") # Mandatory logo if not os.path.exists(LOGO_PATH): raise RuntimeError("Logo not found: data/dds_logo.png.png (commit it to your Space repo).") EMBED_MODEL = "text-embedding-3-small" # 1536-dim LLM_MODEL = "gpt-4o-mini" TOP_K = 4 # internal similarity_top_k # ===== LlamaIndex / Pinecone (simple, fixed serverless: aws/us-east-1) ===== Settings.embed_model = OpenAIEmbedding(model=EMBED_MODEL, api_key=OPENAI_API_KEY) Settings.llm = OpenAI(model=LLM_MODEL, api_key=OPENAI_API_KEY, system_prompt=SYSTEM_PROMPT) pc = Pinecone(api_key=PINECONE_API_KEY) def ensure_index(name: str, dim: int = 1536): names = [i["name"] for i in pc.list_indexes()] if name not in names: pc.create_index( name=name, dimension=dim, metric="cosine", spec=ServerlessSpec(cloud="aws", region="us-east-1"), ) return pc.Index(name) # Fixed index name for simplicity pinecone_index = ensure_index("dds-insurance-index", dim=1536) vector_store = PineconeVectorStore(pinecone_index=pinecone_index) def bootstrap_index(): if not os.path.isdir(DATA_DIR): raise RuntimeError("No 'data/' directory found. Commit your documents to data/ in the Space repo.") docs = SimpleDirectoryReader(DATA_DIR).load_data() if not docs: raise RuntimeError("No documents found in data/. Add e.g., data/insurance.pdf") storage_ctx = StorageContext.from_defaults(vector_store=vector_store) VectorStoreIndex.from_documents(docs, storage_context=storage_ctx, show_progress=True) bootstrap_index() def answer(query: str) -> str: if not query.strip(): return "Please enter a question (or select one from the FAQ list)." index = VectorStoreIndex.from_vector_store(vector_store) resp = index.as_query_engine(similarity_top_k=TOP_K).query(query) return str(resp) FAQS = [ "", "What benefits are covered under the policy?", "How do I file a claim and what documents are required?", "What are the exclusions and limitations?", "Is pre-authorization needed for hospitalization?", "What is the reimbursement timeline?", "How are outpatient vs inpatient services handled?", "How can I check my network hospitals/clinics?", "What is the co-pay or deductible policy?", ] def use_faq(selected_faq: str, free_text: str): prompt = (selected_faq or "").strip() or (free_text or "").strip() if not prompt: return "", "Please select a FAQ or type your question." return prompt, answer(prompt) # ===== UI ===== CSS = """ .header { display:flex; flex-direction:column; align-items:center; gap:6px; } .logo img { width:300px; height:300px; object-fit:contain; } /* fixed 300x300 */ .title { text-align:center; font-weight:700; font-size:1.4rem; margin:6px 0 0 0; } .subnote { text-align:center; margin-top:-2px; opacity:0.8; } """ with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo: with gr.Row(): with gr.Column(): gr.Markdown("
") gr.Image(value=LOGO_PATH, show_label=False, elem_classes=["logo"]) gr.Markdown( "

DDS Insurance Q&A — RAG Assistant

" "

Answers strictly from your insurance document(s)

" ) gr.Markdown("
") with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Ask from Frequently Asked Questions") faq = gr.Dropdown(choices=FAQS, value=FAQS[0], label="Select a common question") gr.Markdown("### Or type your question") user_q = gr.Textbox( label="Your question", placeholder="e.g., What is covered under outpatient benefits?", lines=2 ) ask_btn = gr.Button("Ask", variant="primary") with gr.Column(scale=1): chosen_prompt = gr.Textbox(label="Query sent", interactive=False) answer_box = gr.Markdown() ask_btn.click(use_faq, inputs=[faq, user_q], outputs=[chosen_prompt, answer_box]) if __name__ == "__main__": demo.launch()