Update app.py
Browse files
app.py
CHANGED
|
@@ -1,21 +1,18 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import os
|
| 3 |
-
import time
|
| 4 |
import torch
|
| 5 |
import logging
|
|
|
|
| 6 |
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
st.set_page_config(page_title="
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
if torch.cuda.is_available()
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
device = torch.device("cpu")
|
| 16 |
-
logging.warning("GPU not found, using CPU, translation will be very slow.")
|
| 17 |
|
| 18 |
-
# Language
|
| 19 |
lang_id = {
|
| 20 |
"Afrikaans": "af", "Amharic": "am", "Arabic": "ar", "Asturian": "ast",
|
| 21 |
"Azerbaijani": "az", "Bashkir": "ba", "Belarusian": "be", "Bulgarian": "bg",
|
|
@@ -44,58 +41,58 @@ lang_id = {
|
|
| 44 |
"Yiddish": "yi", "Yoruba": "yo", "Chinese": "zh", "Zulu": "zu",
|
| 45 |
}
|
| 46 |
|
| 47 |
-
# Cache
|
| 48 |
@st.cache_resource
|
| 49 |
-
def load_model(
|
| 50 |
-
tokenizer = M2M100Tokenizer.from_pretrained(
|
| 51 |
-
model = M2M100ForConditionalGeneration.from_pretrained(
|
| 52 |
-
pretrained_model, cache_dir=cache_dir
|
| 53 |
-
).to(device)
|
| 54 |
model.eval()
|
| 55 |
return tokenizer, model
|
| 56 |
|
| 57 |
-
#
|
| 58 |
-
st.title("
|
| 59 |
-
st.
|
| 60 |
-
M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation.
|
| 61 |
-
It supports **100 languages** and translates in **9900 directions**.
|
| 62 |
-
Model: `facebook/m2m100_1.2B`
|
| 63 |
-
More info: [Paper](https://arxiv.org/abs/2010.11125) | [Repo](https://github.com/pytorch/fairseq/tree/master/examples/m2m_100)
|
| 64 |
-
""")
|
| 65 |
|
| 66 |
-
#
|
| 67 |
user_input = st.text_area(
|
| 68 |
-
"Enter text
|
| 69 |
height=200,
|
| 70 |
max_chars=5120,
|
| 71 |
-
placeholder="
|
| 72 |
)
|
| 73 |
|
| 74 |
-
# Language
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
# Translate Button
|
| 79 |
-
if st.button("Translate"):
|
| 80 |
with st.spinner("Translating... Please wait"):
|
| 81 |
-
|
| 82 |
tokenizer, model = load_model()
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
|
| 87 |
-
tokenizer.src_lang =
|
| 88 |
with torch.no_grad():
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
**
|
| 92 |
-
forced_bos_token_id=tokenizer.get_lang_id(
|
| 93 |
)
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
import logging
|
| 4 |
+
import time
|
| 5 |
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
|
| 6 |
|
| 7 |
+
# Configure page
|
| 8 |
+
st.set_page_config(page_title="π Translator", page_icon="π")
|
| 9 |
|
| 10 |
+
# Device detection
|
| 11 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 12 |
+
if device.type == "cpu":
|
| 13 |
+
logging.warning("β οΈ GPU not found β using CPU (translation may be slow).")
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# Language mapping
|
| 16 |
lang_id = {
|
| 17 |
"Afrikaans": "af", "Amharic": "am", "Arabic": "ar", "Asturian": "ast",
|
| 18 |
"Azerbaijani": "az", "Bashkir": "ba", "Belarusian": "be", "Bulgarian": "bg",
|
|
|
|
| 41 |
"Yiddish": "yi", "Yoruba": "yo", "Chinese": "zh", "Zulu": "zu",
|
| 42 |
}
|
| 43 |
|
| 44 |
+
# Cache model/tokenizer loading
|
| 45 |
@st.cache_resource
|
| 46 |
+
def load_model():
|
| 47 |
+
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_1.2B")
|
| 48 |
+
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_1.2B").to(device)
|
|
|
|
|
|
|
| 49 |
model.eval()
|
| 50 |
return tokenizer, model
|
| 51 |
|
| 52 |
+
# Title
|
| 53 |
+
st.title("π M2M100 Language Translator")
|
| 54 |
+
st.markdown("π Translate text between **100+ languages** using Facebook's `M2M100` multilingual model.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
# Text input
|
| 57 |
user_input = st.text_area(
|
| 58 |
+
"βοΈ Enter your text below:",
|
| 59 |
height=200,
|
| 60 |
max_chars=5120,
|
| 61 |
+
placeholder="E.g. Hello, how are you?"
|
| 62 |
)
|
| 63 |
|
| 64 |
+
# Language selections (default: English β Hindi)
|
| 65 |
+
col1, col2 = st.columns(2)
|
| 66 |
+
with col1:
|
| 67 |
+
source_lang = st.selectbox("π Source Language", sorted(lang_id.keys()), index=list(lang_id.keys()).index("English"))
|
| 68 |
+
with col2:
|
| 69 |
+
target_lang = st.selectbox("π Target Language", sorted(lang_id.keys()), index=list(lang_id.keys()).index("Hindi"))
|
| 70 |
|
| 71 |
# Translate Button
|
| 72 |
+
if st.button("π Translate", disabled=(not user_input.strip())):
|
| 73 |
with st.spinner("Translating... Please wait"):
|
| 74 |
+
start = time.time()
|
| 75 |
tokenizer, model = load_model()
|
| 76 |
|
| 77 |
+
src = lang_id[source_lang]
|
| 78 |
+
tgt = lang_id[target_lang]
|
| 79 |
|
| 80 |
+
tokenizer.src_lang = src
|
| 81 |
with torch.no_grad():
|
| 82 |
+
encoded = tokenizer(user_input, return_tensors="pt").to(device)
|
| 83 |
+
output = model.generate(
|
| 84 |
+
**encoded,
|
| 85 |
+
forced_bos_token_id=tokenizer.get_lang_id(tgt)
|
| 86 |
)
|
| 87 |
+
result = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
| 88 |
+
|
| 89 |
+
end = time.time()
|
| 90 |
+
st.success("β
Translation complete!")
|
| 91 |
+
st.markdown("### π Translated Text")
|
| 92 |
+
st.text_area("Output", value=result, height=150, disabled=True)
|
| 93 |
+
st.caption(f"β±οΈ Time taken: {round(end - start, 2)} seconds")
|
| 94 |
|
| 95 |
+
# Optional reset
|
| 96 |
+
st.markdown("---")
|
| 97 |
+
if st.button("π Reset"):
|
| 98 |
+
st.experimental_rerun()
|