Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| # Copyright (c) 2023-2024 DeepSeek. | |
| # | |
| # Permission is hereby granted, free of charge, to any person obtaining a copy of | |
| # this software and associated documentation files (the "Software"), to deal in | |
| # the Software without restriction, including without limitation the rights to | |
| # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of | |
| # the Software, and to permit persons to whom the Software is furnished to do so, | |
| # subject to the following conditions: | |
| # | |
| # The above copyright notice and this permission notice shall be included in all | |
| # copies or substantial portions of the Software. | |
| # | |
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS | |
| # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR | |
| # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
| # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
| # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
| import os.path | |
| # -*- coding:utf-8 -*- | |
| from argparse import ArgumentParser | |
| import spaces | |
| import io | |
| import sys | |
| import base64 | |
| from PIL import Image | |
| import gradio as gr | |
| import torch | |
| from deepseek_vl2.serve.app_modules.gradio_utils import ( | |
| cancel_outputing, | |
| delete_last_conversation, | |
| reset_state, | |
| reset_textbox, | |
| wrap_gen_fn, | |
| ) | |
| from deepseek_vl2.serve.app_modules.overwrites import reload_javascript | |
| from deepseek_vl2.serve.app_modules.presets import ( | |
| CONCURRENT_COUNT, | |
| MAX_EVENTS, | |
| description, | |
| description_top, | |
| title | |
| ) | |
| from deepseek_vl2.serve.app_modules.utils import ( | |
| configure_logger, | |
| is_variable_assigned, | |
| strip_stop_words, | |
| parse_ref_bbox, | |
| pil_to_base64, | |
| display_example | |
| ) | |
| from deepseek_vl2.serve.inference import ( | |
| convert_conversation_to_prompts, | |
| deepseek_generate, | |
| load_model, | |
| ) | |
| from deepseek_vl2.models.conversation import SeparatorStyle | |
| logger = configure_logger() | |
| MODELS = [ | |
| "DeepSeek-VL2-tiny", | |
| "DeepSeek-VL2-small", | |
| "DeepSeek-VL2", | |
| "deepseek-ai/deepseek-vl2-tiny", | |
| "deepseek-ai/deepseek-vl2-small", | |
| "deepseek-ai/deepseek-vl2", | |
| ] | |
| DEPLOY_MODELS = dict() | |
| IMAGE_TOKEN = "<image>" | |
| examples_list = [ | |
| # visual grounding - 1 | |
| [ | |
| ["./images/visual_grounding_1.jpeg"], | |
| "<|ref|>The giraffe at the back.<|/ref|>", | |
| ], | |
| # visual grounding - 2 | |
| [ | |
| ["./images/visual_grounding_2.jpg"], | |
| "找到<|ref|>淡定姐<|/ref|>", | |
| ], | |
| # visual grounding - 3 | |
| [ | |
| ["./images/visual_grounding_3.png"], | |
| "Find all the <|ref|>Watermelon slices<|/ref|>", | |
| ], | |
| # grounding conversation | |
| [ | |
| ["./images/grounding_conversation_1.jpeg"], | |
| "<|grounding|>I want to throw out the trash now, what should I do?", | |
| ], | |
| # in-context visual grounding | |
| [ | |
| [ | |
| "./images/incontext_visual_grounding_1.jpeg", | |
| "./images/icl_vg_2.jpeg" | |
| ], | |
| "<|grounding|>In the first image, an object within the red rectangle is marked. Locate the object of the same category in the second image." | |
| ], | |
| # vqa | |
| [ | |
| ["./images/vqa_1.jpg"], | |
| "Describe each stage of this image in detail", | |
| ], | |
| # multi-images | |
| [ | |
| [ | |
| "./images/multi_image_1.jpeg", | |
| "./images/multi_image_2.jpeg", | |
| "./images/multi_image_3.jpeg" | |
| ], | |
| "能帮我用这几个食材做一道菜吗?", | |
| ] | |
| ] | |
| def fetch_model(model_name: str, dtype=torch.bfloat16): | |
| global args, DEPLOY_MODELS | |
| if args.local_path: | |
| model_path = args.local_path | |
| else: | |
| model_path = model_name | |
| if model_name in DEPLOY_MODELS: | |
| model_info = DEPLOY_MODELS[model_name] | |
| print(f"{model_name} has been loaded.") | |
| else: | |
| print(f"{model_name} is loading...") | |
| DEPLOY_MODELS[model_name] = load_model(model_path, dtype=dtype) | |
| print(f"Load {model_name} successfully...") | |
| model_info = DEPLOY_MODELS[model_name] | |
| return model_info | |
| def generate_prompt_with_history( | |
| text, images, history, vl_chat_processor, tokenizer, max_length=2048 | |
| ): | |
| """ | |
| Generate a prompt with history for the deepseek application. | |
| Args: | |
| text (str): The text prompt. | |
| images (list[PIL.Image.Image]): The image prompt. | |
| history (list): List of previous conversation messages. | |
| tokenizer: The tokenizer used for encoding the prompt. | |
| max_length (int): The maximum length of the prompt. | |
| Returns: | |
| tuple: A tuple containing the generated prompt, image list, conversation, and conversation copy. If the prompt could not be generated within the max_length limit, returns None. | |
| """ | |
| global IMAGE_TOKEN | |
| sft_format = "deepseek" | |
| user_role_ind = 0 | |
| bot_role_ind = 1 | |
| # Initialize conversation | |
| conversation = vl_chat_processor.new_chat_template() | |
| if history: | |
| conversation.messages = history | |
| if images is not None and len(images) > 0: | |
| num_image_tags = text.count(IMAGE_TOKEN) | |
| num_images = len(images) | |
| if num_images > num_image_tags: | |
| pad_image_tags = num_images - num_image_tags | |
| image_tokens = "\n".join([IMAGE_TOKEN] * pad_image_tags) | |
| # append the <image> in a new line after the text prompt | |
| text = image_tokens + "\n" + text | |
| elif num_images < num_image_tags: | |
| remove_image_tags = num_image_tags - num_images | |
| text = text.replace(IMAGE_TOKEN, "", remove_image_tags) | |
| # print(f"prompt = {text}, len(images) = {len(images)}") | |
| text = (text, images) | |
| conversation.append_message(conversation.roles[user_role_ind], text) | |
| conversation.append_message(conversation.roles[bot_role_ind], "") | |
| # Create a copy of the conversation to avoid history truncation in the UI | |
| conversation_copy = conversation.copy() | |
| logger.info("=" * 80) | |
| logger.info(get_prompt(conversation)) | |
| rounds = len(conversation.messages) // 2 | |
| for _ in range(rounds): | |
| current_prompt = get_prompt(conversation) | |
| current_prompt = ( | |
| current_prompt.replace("</s>", "") | |
| if sft_format == "deepseek" | |
| else current_prompt | |
| ) | |
| if torch.tensor(tokenizer.encode(current_prompt)).size(-1) <= max_length: | |
| return conversation_copy | |
| if len(conversation.messages) % 2 != 0: | |
| gr.Error("The messages between user and assistant are not paired.") | |
| return | |
| try: | |
| for _ in range(2): # pop out two messages in a row | |
| conversation.messages.pop(0) | |
| except IndexError: | |
| gr.Error("Input text processing failed, unable to respond in this round.") | |
| return None | |
| gr.Error("Prompt could not be generated within max_length limit.") | |
| return None | |
| def to_gradio_chatbot(conv): | |
| """Convert the conversation to gradio chatbot format.""" | |
| ret = [] | |
| for i, (role, msg) in enumerate(conv.messages[conv.offset:]): | |
| if i % 2 == 0: | |
| if type(msg) is tuple: | |
| msg, images = msg | |
| if isinstance(images, list): | |
| for j, image in enumerate(images): | |
| if isinstance(image, str): | |
| with open(image, "rb") as f: | |
| data = f.read() | |
| img_b64_str = base64.b64encode(data).decode() | |
| image_str = (f'<img src="data:image/png;base64,{img_b64_str}" ' | |
| f'alt="user upload image" style="max-width: 300px; height: auto;" />') | |
| else: | |
| image_str = pil_to_base64(image, f"user upload image_{j}", max_size=800, min_size=400) | |
| # replace the <image> tag in the message | |
| msg = msg.replace(IMAGE_TOKEN, image_str, 1) | |
| else: | |
| pass | |
| ret.append([msg, None]) | |
| else: | |
| ret[-1][-1] = msg | |
| return ret | |
| def to_gradio_history(conv): | |
| """Convert the conversation to gradio history state.""" | |
| return conv.messages[conv.offset:] | |
| def get_prompt(conv) -> str: | |
| """Get the prompt for generation.""" | |
| system_prompt = conv.system_template.format(system_message=conv.system_message) | |
| if conv.sep_style == SeparatorStyle.DeepSeek: | |
| seps = [conv.sep, conv.sep2] | |
| if system_prompt == "" or system_prompt is None: | |
| ret = "" | |
| else: | |
| ret = system_prompt + seps[0] | |
| for i, (role, message) in enumerate(conv.messages): | |
| if message: | |
| if type(message) is tuple: # multimodal message | |
| message, _ = message | |
| ret += role + ": " + message + seps[i % 2] | |
| else: | |
| ret += role + ":" | |
| return ret | |
| else: | |
| return conv.get_prompt() | |
| def transfer_input(input_text, input_images): | |
| print("transferring input text and input image") | |
| return ( | |
| input_text, | |
| input_images, | |
| gr.update(value=""), | |
| gr.update(value=None), | |
| gr.Button(visible=True) | |
| ) | |
| # Specify a duration to avoid timeout | |
| def predict( | |
| text, | |
| images, | |
| chatbot, | |
| history, | |
| top_p, | |
| temperature, | |
| repetition_penalty, | |
| max_length_tokens, | |
| max_context_length_tokens, | |
| model_select_dropdown, | |
| ): | |
| """ | |
| Function to predict the response based on the user's input and selected model. | |
| Parameters: | |
| user_text (str): The input text from the user. | |
| user_image (str): The input image from the user. | |
| chatbot (str): The chatbot's name. | |
| history (str): The history of the chat. | |
| top_p (float): The top-p parameter for the model. | |
| temperature (float): The temperature parameter for the model. | |
| max_length_tokens (int): The maximum length of tokens for the model. | |
| max_context_length_tokens (int): The maximum length of context tokens for the model. | |
| model_select_dropdown (str): The selected model from the dropdown. | |
| Returns: | |
| generator: A generator that yields the chatbot outputs, history, and status. | |
| """ | |
| print("running the prediction function") | |
| try: | |
| tokenizer, vl_gpt, vl_chat_processor = fetch_model(model_select_dropdown) | |
| if text == "": | |
| yield chatbot, history, "Empty context." | |
| return | |
| except KeyError: | |
| yield [[text, "No Model Found"]], [], "No Model Found" | |
| return | |
| if images is None: | |
| images = [] | |
| # load images | |
| pil_images = [] | |
| for img_or_file in images: | |
| try: | |
| # load as pil image | |
| if isinstance(images, Image.Image): | |
| pil_images.append(img_or_file) | |
| else: | |
| image = Image.open(img_or_file.name).convert("RGB") | |
| pil_images.append(image) | |
| except Exception as e: | |
| print(f"Error loading image: {e}") | |
| conversation = generate_prompt_with_history( | |
| text, | |
| pil_images, | |
| history, | |
| vl_chat_processor, | |
| tokenizer, | |
| max_length=max_context_length_tokens, | |
| ) | |
| all_conv, last_image = convert_conversation_to_prompts(conversation) | |
| stop_words = conversation.stop_str | |
| gradio_chatbot_output = to_gradio_chatbot(conversation) | |
| full_response = "" | |
| with torch.no_grad(): | |
| for x in deepseek_generate( | |
| conversations=all_conv, | |
| vl_gpt=vl_gpt, | |
| vl_chat_processor=vl_chat_processor, | |
| tokenizer=tokenizer, | |
| stop_words=stop_words, | |
| max_length=max_length_tokens, | |
| temperature=temperature, | |
| repetition_penalty=repetition_penalty, | |
| top_p=top_p, | |
| chunk_size=args.chunk_size | |
| ): | |
| full_response += x | |
| response = strip_stop_words(full_response, stop_words) | |
| conversation.update_last_message(response) | |
| gradio_chatbot_output[-1][1] = response | |
| # sys.stdout.write(x) | |
| # sys.stdout.flush() | |
| yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..." | |
| if last_image is not None: | |
| # TODO always render the last image's visual grounding image | |
| vg_image = parse_ref_bbox(response, last_image) | |
| if vg_image is not None: | |
| vg_base64 = pil_to_base64(vg_image, f"vg", max_size=800, min_size=400) | |
| gradio_chatbot_output[-1][1] += vg_base64 | |
| yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..." | |
| print("flushed result to gradio") | |
| torch.cuda.empty_cache() | |
| if is_variable_assigned("x"): | |
| print(f"{model_select_dropdown}:\n{text}\n{'-' * 80}\n{x}\n{'=' * 80}") | |
| print( | |
| f"temperature: {temperature}, " | |
| f"top_p: {top_p}, " | |
| f"repetition_penalty: {repetition_penalty}, " | |
| f"max_length_tokens: {max_length_tokens}" | |
| ) | |
| yield gradio_chatbot_output, to_gradio_history(conversation), "Generate: Success" | |
| # @wrap_gen_fn | |
| def retry( | |
| text, | |
| images, | |
| chatbot, | |
| history, | |
| top_p, | |
| temperature, | |
| repetition_penalty, | |
| max_length_tokens, | |
| max_context_length_tokens, | |
| model_select_dropdown, | |
| ): | |
| if len(history) == 0: | |
| yield (chatbot, history, "Empty context") | |
| return | |
| chatbot.pop() | |
| history.pop() | |
| text = history.pop()[-1] | |
| if type(text) is tuple: | |
| text, image = text | |
| yield from predict( | |
| text, | |
| images, | |
| chatbot, | |
| history, | |
| top_p, | |
| temperature, | |
| repetition_penalty, | |
| max_length_tokens, | |
| max_context_length_tokens, | |
| model_select_dropdown, | |
| args.chunk_size | |
| ) | |
| def preview_images(files): | |
| if files is None: | |
| return [] | |
| image_paths = [] | |
| for file in files: | |
| # 使用 file.name 获取文件路径 | |
| # image = Image.open(file.name) | |
| image_paths.append(file.name) | |
| return image_paths # 返回所有图片路径,用于预览 | |
| def build_demo(args): | |
| # fetch model | |
| if not args.lazy_load: | |
| fetch_model(args.model_name) | |
| with open("deepseek_vl2/serve/assets/custom.css", "r", encoding="utf-8") as f: | |
| customCSS = f.read() | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| history = gr.State([]) | |
| input_text = gr.State() | |
| input_images = gr.State() | |
| with gr.Row(): | |
| gr.HTML(title) | |
| status_display = gr.Markdown("Success", elem_id="status_display") | |
| gr.Markdown(description_top) | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=4): | |
| with gr.Row(): | |
| chatbot = gr.Chatbot( | |
| elem_id="deepseek_chatbot", | |
| show_share_button=True, | |
| bubble_full_width=False, | |
| height=600, | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=4): | |
| text_box = gr.Textbox( | |
| show_label=False, placeholder="Enter text", container=False | |
| ) | |
| with gr.Column( | |
| min_width=70, | |
| ): | |
| submitBtn = gr.Button("Send") | |
| with gr.Column( | |
| min_width=70, | |
| ): | |
| cancelBtn = gr.Button("Stop") | |
| with gr.Row(): | |
| emptyBtn = gr.Button( | |
| "🧹 New Conversation", | |
| ) | |
| retryBtn = gr.Button("🔄 Regenerate") | |
| delLastBtn = gr.Button("🗑️ Remove Last Turn") | |
| with gr.Column(): | |
| upload_images = gr.Files(file_types=["image"], show_label=True) | |
| gallery = gr.Gallery(columns=[3], height="200px", show_label=True) | |
| upload_images.change(preview_images, inputs=upload_images, outputs=gallery) | |
| with gr.Tab(label="Parameter Setting") as parameter_row: | |
| top_p = gr.Slider( | |
| minimum=-0, | |
| maximum=1.0, | |
| value=0.9, | |
| step=0.05, | |
| interactive=True, | |
| label="Top-p", | |
| ) | |
| temperature = gr.Slider( | |
| minimum=0, | |
| maximum=1.0, | |
| value=0.1, | |
| step=0.1, | |
| interactive=True, | |
| label="Temperature", | |
| ) | |
| repetition_penalty = gr.Slider( | |
| minimum=0.0, | |
| maximum=2.0, | |
| value=1.1, | |
| step=0.1, | |
| interactive=True, | |
| label="Repetition penalty", | |
| ) | |
| max_length_tokens = gr.Slider( | |
| minimum=0, | |
| maximum=4096, | |
| value=2048, | |
| step=8, | |
| interactive=True, | |
| label="Max Generation Tokens", | |
| ) | |
| max_context_length_tokens = gr.Slider( | |
| minimum=0, | |
| maximum=8192, | |
| value=4096, | |
| step=128, | |
| interactive=True, | |
| label="Max History Tokens", | |
| ) | |
| model_select_dropdown = gr.Dropdown( | |
| label="Select Models", | |
| choices=[args.model_name], | |
| multiselect=False, | |
| value=args.model_name, | |
| interactive=True, | |
| ) | |
| # show images, but not visible | |
| show_images = gr.HTML(visible=False) | |
| # show_images = gr.Image(type="pil", interactive=False, visible=False) | |
| def format_examples(examples_list): | |
| examples = [] | |
| current_dir = os.path.dirname(os.path.abspath(__file__)) | |
| for images, texts in examples_list: | |
| examples.append([images, display_example(images, current_dir), texts]) | |
| return examples | |
| gr.Examples( | |
| examples=format_examples(examples_list), | |
| inputs=[upload_images, show_images, text_box], | |
| ) | |
| gr.Markdown(description) | |
| input_widgets = [ | |
| input_text, | |
| input_images, | |
| chatbot, | |
| history, | |
| top_p, | |
| temperature, | |
| repetition_penalty, | |
| max_length_tokens, | |
| max_context_length_tokens, | |
| model_select_dropdown, | |
| ] | |
| output_widgets = [chatbot, history, status_display] | |
| transfer_input_args = dict( | |
| fn=transfer_input, | |
| inputs=[text_box, upload_images], | |
| outputs=[input_text, input_images, text_box, upload_images, submitBtn], | |
| show_progress=True, | |
| ) | |
| predict_args = dict( | |
| fn=predict, | |
| inputs=input_widgets, | |
| outputs=output_widgets, | |
| show_progress=True, | |
| ) | |
| retry_args = dict( | |
| fn=retry, | |
| inputs=input_widgets, | |
| outputs=output_widgets, | |
| show_progress=True, | |
| ) | |
| reset_args = dict( | |
| fn=reset_textbox, inputs=[], outputs=[text_box, status_display] | |
| ) | |
| predict_events = [ | |
| text_box.submit(**transfer_input_args).then(**predict_args), | |
| submitBtn.click(**transfer_input_args).then(**predict_args), | |
| ] | |
| emptyBtn.click(reset_state, outputs=output_widgets, show_progress=True) | |
| emptyBtn.click(**reset_args) | |
| retryBtn.click(**retry_args) | |
| delLastBtn.click( | |
| delete_last_conversation, | |
| [chatbot, history], | |
| output_widgets, | |
| show_progress=True, | |
| ) | |
| cancelBtn.click(cancel_outputing, [], [status_display], cancels=predict_events) | |
| return demo | |
| if __name__ == "__main__": | |
| parser = ArgumentParser() | |
| parser.add_argument("--model_name", type=str, default="deepseek-ai/deepseek-vl2-small", choices=MODELS, help="model name") | |
| parser.add_argument("--local_path", type=str, default="", help="huggingface ckpt, optional") | |
| parser.add_argument("--ip", type=str, default="0.0.0.0", help="ip address") | |
| parser.add_argument("--port", type=int, default=37913, help="port number") | |
| parser.add_argument("--root_path", type=str, default="", help="root path") | |
| parser.add_argument("--lazy_load", action='store_true') | |
| parser.add_argument("--chunk_size", type=int, default=512, | |
| help="chunk size for the model for prefiiling. " | |
| "When using 40G gpu for vl2-small, set a chunk_size for incremental_prefilling." | |
| "Otherwise, default value is -1, which means we do not use incremental_prefilling.") | |
| args = parser.parse_args() | |
| demo = build_demo(args) | |
| demo.title = "DeepSeek-VL2-small Chatbot" | |
| reload_javascript() | |
| # concurrency_count=CONCURRENT_COUNT, max_size=MAX_EVENTS | |
| demo.queue().launch( | |
| favicon_path="deepseek_vl2/serve/assets/favicon.ico", | |
| ) | |
