Spaces:
Sleeping
Sleeping
Commit
·
c14578e
1
Parent(s):
ddbe218
Upload 5 files
Browse files- .gitattributes +3 -0
- examples/input/1.jpeg +3 -0
- examples/input/2.jpeg +3 -0
- examples/input/3.jpeg +3 -0
- main.py +162 -0
- requirements.txt +5 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
examples/input/1.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
examples/input/2.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
examples/input/3.jpeg filter=lfs diff=lfs merge=lfs -text
|
examples/input/1.jpeg
ADDED
|
Git LFS Details
|
examples/input/2.jpeg
ADDED
|
Git LFS Details
|
examples/input/3.jpeg
ADDED
|
Git LFS Details
|
main.py
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
| 8 |
+
from torch.autograd import Variable
|
| 9 |
+
from PIL import Image
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def build_model(hypar, device):
|
| 13 |
+
net = hypar["model"] # GOSNETINC(3,1)
|
| 14 |
+
|
| 15 |
+
# convert to half precision
|
| 16 |
+
if hypar["model_digit"] == "half":
|
| 17 |
+
net.half()
|
| 18 |
+
for layer in net.modules():
|
| 19 |
+
if isinstance(layer, nn.BatchNorm2d):
|
| 20 |
+
layer.float()
|
| 21 |
+
|
| 22 |
+
net.to(device)
|
| 23 |
+
|
| 24 |
+
if hypar["restore_model"] != "":
|
| 25 |
+
net.load_state_dict(
|
| 26 |
+
torch.load(
|
| 27 |
+
hypar["model_path"] + "/" + hypar["restore_model"],
|
| 28 |
+
map_location=device,
|
| 29 |
+
)
|
| 30 |
+
)
|
| 31 |
+
net.to(device)
|
| 32 |
+
net.eval()
|
| 33 |
+
return net
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
if not os.path.exists("saved_models"):
|
| 37 |
+
os.mkdir("saved_models")
|
| 38 |
+
os.mkdir("git")
|
| 39 |
+
os.system("git clone https://github.com/xuebinqin/DIS git/xuebinqin/DIS")
|
| 40 |
+
hf_hub_download(
|
| 41 |
+
repo_id="NimaBoscarino/IS-Net_DIS-general-use",
|
| 42 |
+
filename="isnet-general-use.pth",
|
| 43 |
+
local_dir="saved_models",
|
| 44 |
+
)
|
| 45 |
+
os.system("rm -r git/xuebinqin/DIS/IS-Net/__pycache__")
|
| 46 |
+
os.system("mv git/xuebinqin/DIS/IS-Net/* .")
|
| 47 |
+
|
| 48 |
+
import data_loader_cache
|
| 49 |
+
import models
|
| 50 |
+
|
| 51 |
+
device = "cpu"
|
| 52 |
+
ISNetDIS = models.ISNetDIS
|
| 53 |
+
normalize = data_loader_cache.normalize
|
| 54 |
+
im_preprocess = data_loader_cache.im_preprocess
|
| 55 |
+
|
| 56 |
+
# Set Parameters
|
| 57 |
+
hypar = {} # paramters for inferencing
|
| 58 |
+
|
| 59 |
+
# load trained weights from this path
|
| 60 |
+
hypar["model_path"] = "./saved_models"
|
| 61 |
+
# name of the to-be-loaded weights
|
| 62 |
+
hypar["restore_model"] = "isnet-general-use.pth"
|
| 63 |
+
# indicate if activate intermediate feature supervision
|
| 64 |
+
hypar["interm_sup"] = False
|
| 65 |
+
|
| 66 |
+
# choose floating point accuracy --
|
| 67 |
+
# indicates "half" or "full" accuracy of float number
|
| 68 |
+
hypar["model_digit"] = "full"
|
| 69 |
+
hypar["seed"] = 0
|
| 70 |
+
|
| 71 |
+
# cached input spatial resolution, can be configured into different size
|
| 72 |
+
hypar["cache_size"] = [1024, 1024]
|
| 73 |
+
|
| 74 |
+
# data augmentation parameters ---
|
| 75 |
+
# mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
|
| 76 |
+
hypar["input_size"] = [1024, 1024]
|
| 77 |
+
# random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation
|
| 78 |
+
hypar["crop_size"] = [1024, 1024]
|
| 79 |
+
|
| 80 |
+
hypar["model"] = ISNetDIS()
|
| 81 |
+
|
| 82 |
+
# Build Model
|
| 83 |
+
net = build_model(hypar, device)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def predict(net, inputs_val, shapes_val, hypar, device):
|
| 87 |
+
"""
|
| 88 |
+
Given an Image, predict the mask
|
| 89 |
+
"""
|
| 90 |
+
net.eval()
|
| 91 |
+
|
| 92 |
+
if hypar["model_digit"] == "full":
|
| 93 |
+
inputs_val = inputs_val.type(torch.FloatTensor)
|
| 94 |
+
else:
|
| 95 |
+
inputs_val = inputs_val.type(torch.HalfTensor)
|
| 96 |
+
|
| 97 |
+
inputs_val_v = Variable(inputs_val, requires_grad=False).to(
|
| 98 |
+
device
|
| 99 |
+
) # wrap inputs in Variable
|
| 100 |
+
|
| 101 |
+
ds_val = net(inputs_val_v)[0] # list of 6 results
|
| 102 |
+
|
| 103 |
+
# B x 1 x H x W # we want the first one which is the most accurate prediction
|
| 104 |
+
pred_val = ds_val[0][0, :, :, :]
|
| 105 |
+
|
| 106 |
+
# recover the prediction spatial size to the orignal image size
|
| 107 |
+
pred_val = torch.squeeze(
|
| 108 |
+
F.upsample(
|
| 109 |
+
torch.unsqueeze(pred_val, 0),
|
| 110 |
+
(shapes_val[0][0], shapes_val[0][1]),
|
| 111 |
+
mode="bilinear",
|
| 112 |
+
)
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
ma = torch.max(pred_val)
|
| 116 |
+
mi = torch.min(pred_val)
|
| 117 |
+
pred_val = (pred_val - mi) / (ma - mi) # max = 1
|
| 118 |
+
|
| 119 |
+
if device == "cpu":
|
| 120 |
+
torch.cpu.empty_cache()
|
| 121 |
+
# it is the mask we need
|
| 122 |
+
return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def load_image(im_pil, hypar):
|
| 126 |
+
im = np.array(im_pil)
|
| 127 |
+
im, im_shp = im_preprocess(im, hypar["cache_size"])
|
| 128 |
+
im = torch.divide(im, 255.0)
|
| 129 |
+
shape = torch.from_numpy(np.array(im_shp))
|
| 130 |
+
# make a batch of image, shape
|
| 131 |
+
aa = normalize(im, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
|
| 132 |
+
return aa.unsqueeze(0), shape.unsqueeze(0)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def remove_background(image):
|
| 136 |
+
image_tensor, orig_size = load_image(image, hypar)
|
| 137 |
+
mask = predict(net, image_tensor, orig_size, hypar, "cpu")
|
| 138 |
+
|
| 139 |
+
mask = Image.fromarray(mask).convert("L")
|
| 140 |
+
im_rgb = image.convert("RGB")
|
| 141 |
+
|
| 142 |
+
cropped = im_rgb.copy()
|
| 143 |
+
cropped.putalpha(mask)
|
| 144 |
+
return cropped
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
inputs = gr.inputs.Image()
|
| 148 |
+
outputs = gr.outputs.Image(type="pil")
|
| 149 |
+
interface = gr.Interface(
|
| 150 |
+
fn=remove_background,
|
| 151 |
+
inputs=inputs,
|
| 152 |
+
outputs=outputs,
|
| 153 |
+
title="Remove Background",
|
| 154 |
+
description="This App removes the background from an image",
|
| 155 |
+
examples=[
|
| 156 |
+
"examples/input/1.jpeg",
|
| 157 |
+
"examples/input/2.jpeg",
|
| 158 |
+
"examples/input/3.jpeg",
|
| 159 |
+
],
|
| 160 |
+
cache_examples=True,
|
| 161 |
+
)
|
| 162 |
+
interface.launch(enable_queue=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==3.14.0
|
| 2 |
+
Pillow
|
| 3 |
+
huggingface-hub
|
| 4 |
+
torch
|
| 5 |
+
numpy
|