Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,7 @@ import gradio as gr
|
|
| 6 |
import datetime
|
| 7 |
import os
|
| 8 |
|
| 9 |
-
#
|
| 10 |
hf_token = os.environ.get("new_hf")
|
| 11 |
login(token=hf_token)
|
| 12 |
|
|
@@ -21,7 +21,7 @@ label_map = {
|
|
| 21 |
6: "میگرن"
|
| 22 |
}
|
| 23 |
|
| 24 |
-
# مدل تشخیص بیماری
|
| 25 |
bert_model_id = "diginoron/bert-medical-fa"
|
| 26 |
bert_tokenizer = AutoTokenizer.from_pretrained(bert_model_id)
|
| 27 |
bert_model = AutoModelForSequenceClassification.from_pretrained(bert_model_id)
|
|
@@ -37,7 +37,7 @@ gemma_model = AutoModelForCausalLM.from_pretrained(
|
|
| 37 |
)
|
| 38 |
gemma_model.eval()
|
| 39 |
|
| 40 |
-
# تابع
|
| 41 |
def predict_and_explain(symptoms):
|
| 42 |
inputs = bert_tokenizer(symptoms, return_tensors="pt")
|
| 43 |
with torch.no_grad():
|
|
@@ -48,7 +48,7 @@ def predict_and_explain(symptoms):
|
|
| 48 |
prediction = prediction.item()
|
| 49 |
|
| 50 |
if confidence < 0.5:
|
| 51 |
-
return "❌ تشخیص قطعی داده نشد. لطفاً با پزشک مشورت کنید.", ""
|
| 52 |
|
| 53 |
diagnosis = label_map[prediction]
|
| 54 |
diagnosis_text = f"✅ احتمالاً شما دچار {diagnosis} هستید. (اطمینان: {round(confidence * 100, 1)}٪)"
|
|
@@ -62,16 +62,17 @@ def predict_and_explain(symptoms):
|
|
| 62 |
with torch.no_grad():
|
| 63 |
output = gemma_model.generate(
|
| 64 |
**inputs,
|
| 65 |
-
max_new_tokens=
|
| 66 |
do_sample=True,
|
| 67 |
top_p=0.9,
|
| 68 |
-
temperature=0.7
|
|
|
|
| 69 |
)
|
| 70 |
|
| 71 |
explanation = gemma_tokenizer.decode(output[0], skip_special_tokens=True)
|
| 72 |
explanation = explanation.replace(prompt, "").strip()
|
| 73 |
|
| 74 |
-
return diagnosis_text, explanation
|
| 75 |
|
| 76 |
# رابط Gradio
|
| 77 |
with gr.Blocks(css="body { font-family: Vazirmatn, sans-serif; background-color: #111827; color: #f3f4f6; } .gr-button { font-weight: bold; }") as demo:
|
|
@@ -79,16 +80,25 @@ with gr.Blocks(css="body { font-family: Vazirmatn, sans-serif; background-color:
|
|
| 79 |
|
| 80 |
with gr.Row():
|
| 81 |
inp = gr.Textbox(placeholder="مثلاً: سرفه خشک، تب، گلودرد", label="علائم شما")
|
|
|
|
| 82 |
with gr.Row():
|
| 83 |
out1 = gr.Textbox(label="نتیجه تشخیص اولیه")
|
| 84 |
with gr.Row():
|
| 85 |
out2 = gr.Textbox(label="توضیح بیماری و پیشنهادات اولیه")
|
| 86 |
|
|
|
|
|
|
|
|
|
|
| 87 |
btn = gr.Button("🔍 بررسی و تحلیل علائم")
|
| 88 |
clr = gr.Button("🧹 پاک کردن همه موارد")
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
gr.Markdown(f"""
|
| 94 |
---
|
|
|
|
| 6 |
import datetime
|
| 7 |
import os
|
| 8 |
|
| 9 |
+
# ورود با سکرت
|
| 10 |
hf_token = os.environ.get("new_hf")
|
| 11 |
login(token=hf_token)
|
| 12 |
|
|
|
|
| 21 |
6: "میگرن"
|
| 22 |
}
|
| 23 |
|
| 24 |
+
# مدل BERT تشخیص بیماری
|
| 25 |
bert_model_id = "diginoron/bert-medical-fa"
|
| 26 |
bert_tokenizer = AutoTokenizer.from_pretrained(bert_model_id)
|
| 27 |
bert_model = AutoModelForSequenceClassification.from_pretrained(bert_model_id)
|
|
|
|
| 37 |
)
|
| 38 |
gemma_model.eval()
|
| 39 |
|
| 40 |
+
# تابع اصلی با Indicator
|
| 41 |
def predict_and_explain(symptoms):
|
| 42 |
inputs = bert_tokenizer(symptoms, return_tensors="pt")
|
| 43 |
with torch.no_grad():
|
|
|
|
| 48 |
prediction = prediction.item()
|
| 49 |
|
| 50 |
if confidence < 0.5:
|
| 51 |
+
return "❌ تشخیص قطعی داده نشد. لطفاً با پزشک مشورت کنید.", "", gr.update(visible=False)
|
| 52 |
|
| 53 |
diagnosis = label_map[prediction]
|
| 54 |
diagnosis_text = f"✅ احتمالاً شما دچار {diagnosis} هستید. (اطمینان: {round(confidence * 100, 1)}٪)"
|
|
|
|
| 62 |
with torch.no_grad():
|
| 63 |
output = gemma_model.generate(
|
| 64 |
**inputs,
|
| 65 |
+
max_new_tokens=150,
|
| 66 |
do_sample=True,
|
| 67 |
top_p=0.9,
|
| 68 |
+
temperature=0.7,
|
| 69 |
+
use_cache=True
|
| 70 |
)
|
| 71 |
|
| 72 |
explanation = gemma_tokenizer.decode(output[0], skip_special_tokens=True)
|
| 73 |
explanation = explanation.replace(prompt, "").strip()
|
| 74 |
|
| 75 |
+
return diagnosis_text, explanation, gr.update(visible=False)
|
| 76 |
|
| 77 |
# رابط Gradio
|
| 78 |
with gr.Blocks(css="body { font-family: Vazirmatn, sans-serif; background-color: #111827; color: #f3f4f6; } .gr-button { font-weight: bold; }") as demo:
|
|
|
|
| 80 |
|
| 81 |
with gr.Row():
|
| 82 |
inp = gr.Textbox(placeholder="مثلاً: سرفه خشک، تب، گلودرد", label="علائم شما")
|
| 83 |
+
|
| 84 |
with gr.Row():
|
| 85 |
out1 = gr.Textbox(label="نتیجه تشخیص اولیه")
|
| 86 |
with gr.Row():
|
| 87 |
out2 = gr.Textbox(label="توضیح بیماری و پیشنهادات اولیه")
|
| 88 |
|
| 89 |
+
with gr.Row():
|
| 90 |
+
status = gr.Markdown("⏳ لطفاً منتظر بمانید...", visible=False)
|
| 91 |
+
|
| 92 |
btn = gr.Button("🔍 بررسی و تحلیل علائم")
|
| 93 |
clr = gr.Button("🧹 پاک کردن همه موارد")
|
| 94 |
|
| 95 |
+
# هنگام کلیک، وضعیت به visible و پس از اجرا به invisible
|
| 96 |
+
def wrapper(symptoms):
|
| 97 |
+
status.update(visible=True)
|
| 98 |
+
return predict_and_explain(symptoms)
|
| 99 |
+
|
| 100 |
+
btn.click(fn=predict_and_explain, inputs=inp, outputs=[out1, out2, status])
|
| 101 |
+
clr.click(fn=lambda: ("", "", gr.update(visible=False)), inputs=[], outputs=[inp, out1, out2, status])
|
| 102 |
|
| 103 |
gr.Markdown(f"""
|
| 104 |
---
|