Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,171 Bytes
7114b05 06bb5bc 7114b05 06bb5bc 7114b05 06bb5bc 7114b05 06bb5bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from diffusers import QwenImageEditPlusPipeline
import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
import os
import gradio as gr
from gradio_client import Client, handle_file
import tempfile
from typing import Optional, Tuple, Any
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3),
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3),
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
# ================================================================================================
# added by DJ
# TEMP DIRECTORY MANAGEMENT
TEMP_DIR = tempfile.gettempdir()
# 用於追蹤生成的影片
generated_files = []
def find_gradio_temp_files():
"""尋找 Gradio 暫存目錄中的檔案"""
gradio_files = []
# Gradio 通常會在臨時目錄下創建 gradio 子目錄
possible_gradio_dirs = [
os.path.join(TEMP_DIR, "gradio"),
os.path.join(TEMP_DIR, "tmp"),
TEMP_DIR
]
for base_dir in possible_gradio_dirs:
if os.path.exists(base_dir):
try:
for root, dirs, files in os.walk(base_dir):
for file in files:
# 只列出圖片和影片檔案
if file.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp', '.webp', '.mp4', '.avi', '.mov', '.mkv')):
filepath = os.path.join(root, file)
gradio_files.append(filepath)
except PermissionError:
continue
return gradio_files
def list_temp_files():
"""列出 Gradio 暫存的圖片和生成的影片"""
try:
result = f"📁 臨時目錄路徑: {TEMP_DIR}\n"
result += "=" * 60 + "\n\n"
# 尋找 Gradio 暫存的檔案
gradio_files = find_gradio_temp_files()
# 分類檔案
image_files = []
video_files = []
for filepath in gradio_files:
filename = os.path.basename(filepath)
ext = os.path.splitext(filename)[1].lower()
if ext in ['.png', '.jpg', '.jpeg', '.gif', '.bmp', '.webp']:
image_files.append(filepath)
elif ext in ['.mp4', '.avi', '.mov', '.mkv']:
video_files.append(filepath)
# 顯示上傳的圖片(Gradio 暫存)
if image_files:
result += f"📤 Gradio 暫存的圖片 ({len(image_files)} 個):\n"
result += "-" * 60 + "\n"
for i, filepath in enumerate(image_files, 1):
if os.path.exists(filepath):
filename = os.path.basename(filepath)
size = os.path.getsize(filepath)
size_mb = size / (1024 * 1024)
# 顯示相對路徑以便識別
rel_path = os.path.relpath(filepath, TEMP_DIR)
result += f"{i}. {filename}\n"
result += f" 📍 {rel_path} ({size_mb:.2f} MB)\n"
result += "\n"
else:
result += "📤 Gradio 暫存的圖片: 無\n\n"
# 顯示生成的影片
if video_files:
result += f"🎬 生成的影片 ({len(video_files)} 個):\n"
result += "-" * 60 + "\n"
for i, filepath in enumerate(video_files, 1):
if os.path.exists(filepath):
filename = os.path.basename(filepath)
size = os.path.getsize(filepath)
size_mb = size / (1024 * 1024)
rel_path = os.path.relpath(filepath, TEMP_DIR)
result += f"{i}. {filename}\n"
result += f" 📍 {rel_path} ({size_mb:.2f} MB)\n"
result += "\n"
else:
result += "🎬 生成的影片: 無\n\n"
# 統計
total_files = len(image_files) + len(video_files)
result += "=" * 60 + "\n"
result += f"📊 統計: 圖片 {len(image_files)} 個 | 影片 {len(video_files)} 個 | 總計 {total_files} 個"
return result
except Exception as e:
return f"❌ 錯誤: 無法讀取檔案列表 - {str(e)}"
def clear_temp_files():
"""清除 Gradio 暫存的圖片和生成的影片"""
try:
deleted_count = 0
error_count = 0
# 尋找所有要刪除的檔案
gradio_files = find_gradio_temp_files()
for filepath in gradio_files:
try:
if os.path.exists(filepath):
os.remove(filepath)
deleted_count += 1
except Exception as e:
error_count += 1
print(f"無法刪除 {filepath}: {str(e)}")
# 清空追蹤的生成檔案列表
generated_files.clear()
result = "🗑️ 清除完成!\n"
result += "=" * 60 + "\n"
result += f"✅ 成功刪除: {deleted_count} 個檔案\n"
if error_count > 0:
result += f"⚠️ 刪除失敗: {error_count} 個檔案\n"
result += f"\n📁 臨時目錄: {TEMP_DIR}\n"
result += "\n💡 提示: Gradio 暫存圖片和生成的影片已清除"
return result
except Exception as e:
return f"❌ 錯誤: 清除失敗 - {str(e)}"
# ================================================================================================
pipe = QwenImageEditPlusPipeline.from_pretrained(
"Qwen/Qwen-Image-Edit-2509",
scheduler=scheduler,
torch_dtype=dtype
).to(device)
pipe.load_lora_weights(
"lightx2v/Qwen-Image-Lightning",
weight_name="Qwen-Image-Lightning-8steps-V2.0-bf16.safetensors",
adapter_name="fast"
)
pipe.load_lora_weights(
"dx8152/Qwen-Edit-2509-Light-Migration",
weight_name="参考色调.safetensors",
adapter_name="angles"
)
pipe.set_adapters(["angles"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["angles"], lora_scale=1.)
pipe.set_adapters(["fast"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["fast"], lora_scale=1.)
pipe.unload_lora_weights()
#spaces.aoti_blocks_load(pipe.transformer, "zerogpu-aoti/Qwen-Image", variant="fa3")
pipe.transformer.set_attention_backend("_flash_3_hub")
optimize_pipeline_(
pipe,
image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))],
prompt="prompt"
)
MAX_SEED = np.iinfo(np.int32).max
# Default prompt for light migration
DEFAULT_PROMPT = "参考色调,移除图1原有的光照并参考图2的光照和色调对图1重新照明"
@spaces.GPU
def infer_light_migration(
image: Optional[Image.Image] = None,
light_source: Optional[Image.Image] = None,
prompt: str = DEFAULT_PROMPT,
seed: int = 0,
randomize_seed: bool = True,
true_guidance_scale: float = 1.0,
num_inference_steps: int = 8,
height: Optional[int] = None,
width: Optional[int] = None,
progress: Optional[gr.Progress] = gr.Progress(track_tqdm=True)
) -> Tuple[Image.Image, int]:
"""
Transfer lighting and color tones from a reference image to a source image
using Qwen Image Edit 2509 with the Light Migration LoRA.
Args:
image (PIL.Image.Image | None, optional):
The source image to relight. Defaults to None.
light_source (PIL.Image.Image | None, optional):
The reference image providing the lighting and color tones. Defaults to None.
prompt (str, optional):
The prompt describing the lighting transfer operation.
Defaults to the Chinese prompt for light migration.
seed (int, optional):
Random seed for the generation. Ignored if `randomize_seed=True`.
Defaults to 0.
randomize_seed (bool, optional):
If True, a random seed (0..MAX_SEED) is chosen per call.
Defaults to True.
true_guidance_scale (float, optional):
CFG / guidance scale controlling prompt adherence.
Defaults to 1.0 for the distilled transformer.
num_inference_steps (int, optional):
Number of inference steps. Defaults to 4.
height (int, optional):
Output image height. Must typically be a multiple of 8.
If set to 0 or None, the model will infer a size. Defaults to None.
width (int, optional):
Output image width. Must typically be a multiple of 8.
If set to 0 or None, the model will infer a size. Defaults to None.
Returns:
Tuple[PIL.Image.Image, int]:
- The relit output image.
- The actual seed used for generation.
"""
if image is None:
raise gr.Error("Please upload a source image (Image 1).")
if light_source is None:
raise gr.Error("Please upload a light source reference image (Image 2).")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Prepare images - Image 1 is source, Image 2 is light reference
pil_images = []
if isinstance(image, Image.Image):
pil_images.append(image.convert("RGB"))
elif hasattr(image, "name"):
pil_images.append(Image.open(image.name).convert("RGB"))
if isinstance(light_source, Image.Image):
pil_images.append(light_source.convert("RGB"))
elif hasattr(light_source, "name"):
pil_images.append(Image.open(light_source.name).convert("RGB"))
result = pipe(
image=pil_images,
prompt=prompt,
height=height if height and height != 0 else None,
width=width if width and width != 0 else None,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=1,
).images[0]
return result, seed
def update_dimensions_on_upload(
image: Optional[Image.Image]
) -> Tuple[int, int]:
"""
Compute recommended (width, height) for the output resolution when an
image is uploaded while preserving the aspect ratio.
Args:
image (PIL.Image.Image | None):
The uploaded image. If `None`, defaults to (1024, 1024).
Returns:
Tuple[int, int]:
The new (width, height).
"""
if image is None:
return 1024, 1024
original_width, original_height = image.size
if original_width > original_height:
new_width = 1024
aspect_ratio = original_height / original_width
new_height = int(new_width * aspect_ratio)
else:
new_height = 1024
aspect_ratio = original_width / original_height
new_width = int(new_height * aspect_ratio)
# Ensure dimensions are multiples of 8
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
return new_width, new_height
# --- UI ---
css = '''
#col-container { max-width: 1000px; margin: 0 auto; }
.dark .progress-text { color: white !important }
#examples { max-width: 1000px; margin: 0 auto; }
.image-container { min-height: 300px; }
'''
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("## 💡 Qwen Image Edit — Light Migration")
gr.Markdown("""
Transfer lighting and color tones from a reference image to your source image ✨
Using [dx8152's Qwen-Edit-2509-Light-Migration LoRA](https://huggingface.co/dx8152/Qwen-Edit-2509-Light-Migration)
and [lightx2v/Qwen-Image-Lightning](https://huggingface.co/lightx2v/Qwen-Image-Lightning/tree/main) for 8-step inference 💨
""")
with gr.Row():
with gr.Column():
with gr.Row():
image = gr.Image(
label="Image 1 (Source - to be relit)",
type="pil",
elem_classes="image-container"
)
light_source = gr.Image(
label="Image 2 (Light Reference)",
type="pil",
elem_classes="image-container"
)
run_btn = gr.Button("✨ Transfer Lighting", variant="primary", size="lg")
with gr.Accordion("Advanced Settings", open=False):
prompt = gr.Textbox(
label="Prompt",
value=DEFAULT_PROMPT,
placeholder="Enter prompt for light migration...",
lines=2
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0
)
randomize_seed = gr.Checkbox(
label="Randomize Seed",
value=True
)
true_guidance_scale = gr.Slider(
label="True Guidance Scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=1.0
)
num_inference_steps = gr.Slider(
label="Inference Steps",
minimum=1,
maximum=40,
step=1,
value=8
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=2048,
step=8,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=2048,
step=8,
value=1024
)
# ================================================================================================
# added by DJ
# 檔案管理區塊
gr.Markdown("---")
gr.Markdown("### 📁 檔案管理")
with gr.Row():
print_button = gr.Button("📋 Print", variant="secondary")
clear_button = gr.Button("🗑️ Clear", variant="stop")
file_list_textbox = gr.Textbox(
label="列表",
lines=12,
placeholder="點擊 Print 按鈕查看檔案列表...\n\n📤 會顯示 Gradio 暫存的圖片\n🎬 會顯示生成的影片",
interactive=False
)
# ================================================================================================
with gr.Column():
result = gr.Image(label="Output Image", interactive=False)
# output_seed = gr.Number(label="Seed Used", interactive=False, visible=False)
gr.Examples(
examples=[
# Character 1 with 3 different lights
["character_1.png", "light_1.png"],
["character_1.png", "light_3.jpeg"],
["character_1.png", "light_5.png"],
# Character 2 with 3 different lights
["character_2.png", "light_2.png"],
["character_2.png", "light_4.png"],
["character_2.png", "light_6.png"],
# Place 1 with 3 different lights
["place_1.png", "light_1.png"],
["place_1.png", "light_4.png"],
["place_1.png", "light_6.png"],
],
inputs=[
image, light_source
],
outputs=[result, seed],
fn=infer_light_migration,
cache_examples=True,
cache_mode="lazy",
elem_id="examples"
)
inputs = [
image, light_source, prompt,
seed, randomize_seed, true_guidance_scale,
num_inference_steps, height, width
]
outputs = [result, seed]
# Run button click
run_btn.click(
fn=infer_light_migration,
inputs=inputs,
outputs=outputs
)
# ================================================================================================
# added by DJ
print_button.click(fn=list_temp_files, inputs=None, outputs=file_list_textbox)
clear_button.click(fn=clear_temp_files, inputs=None, outputs=file_list_textbox)
# ================================================================================================
# Image upload triggers dimension update
image.upload(
fn=update_dimensions_on_upload,
inputs=[image],
outputs=[width, height]
)
# API endpoint
# gr.api(infer_light_migration, api_name="infer_light_migration")
# ================================================================================================
# modified by DJ
# demo.launch(mcp_server=True, theme=gr.themes.Citrus(), css=css, footer_links=["api", "gradio", "settings"])
demo.launch(theme=gr.themes.Citrus(), css=css, footer_links=["api", "gradio", "settings"])
# ================================================================================================ |