Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,477 +1,474 @@
|
|
| 1 |
# coding=utf-8
|
| 2 |
-
# Copyright 2023 The GlotLID Authors.
|
| 3 |
-
# Lint as: python3
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
# This space is built based on AMR-KELEG/ALDi space.
|
| 7 |
-
# GlotLID Space
|
| 8 |
-
|
| 9 |
-
import string
|
| 10 |
-
import constants
|
| 11 |
-
import pandas as pd
|
| 12 |
import streamlit as st
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
import matplotlib
|
| 16 |
-
from matplotlib import pyplot as plt
|
| 17 |
-
import fasttext
|
| 18 |
import altair as alt
|
| 19 |
-
from
|
| 20 |
-
import
|
|
|
|
| 21 |
import json
|
| 22 |
import os
|
| 23 |
import re
|
| 24 |
-
import
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
if all_scripts_dict:
|
| 48 |
-
all_scripts = list(all_scripts_dict.keys())
|
| 49 |
-
else:
|
| 50 |
-
all_scripts = 'Zyyy'
|
| 51 |
-
|
| 52 |
-
for ws in all_scripts:
|
| 53 |
-
if ws in ['Kana', 'Hrkt', 'Hani', 'Hira']:
|
| 54 |
-
all_scripts.append('Jpan')
|
| 55 |
-
|
| 56 |
-
all_scripts = list(set(all_scripts))
|
| 57 |
-
return main_script, all_scripts
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
def preprocess_text(text):
|
| 61 |
-
"""Apply preprocessing to the given text.
|
| 62 |
-
Args:
|
| 63 |
-
text: Thetext to be preprocessed.
|
| 64 |
-
Returns:
|
| 65 |
-
The preprocessed text.
|
| 66 |
-
"""
|
| 67 |
-
|
| 68 |
-
# remove \n
|
| 69 |
-
text = text.replace('\n', ' ')
|
| 70 |
-
|
| 71 |
-
# get rid of characters that are ubiquitous
|
| 72 |
-
replace_by = " "
|
| 73 |
-
replacement_map = {
|
| 74 |
-
ord(c): replace_by
|
| 75 |
-
for c in ':β’#{|}' + string.digits
|
| 76 |
}
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
""
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
}"""
|
| 136 |
-
st.code(_CITATION, language="python", line_numbers=False)
|
| 137 |
-
|
| 138 |
|
|
|
|
| 139 |
@st.cache_data
|
| 140 |
-
def
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
@st.cache_resource
|
| 146 |
-
def load_model(
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
# model_1 = load_model(constants.MODEL_NAME, "model_v1.bin")
|
| 159 |
-
# model_2 = load_model(constants.MODEL_NAME, "model_v2.bin")
|
| 160 |
-
# model_3 = load_model(constants.MODEL_NAME, "model_v3.bin")
|
| 161 |
-
# openlid = load_model('laurievb/OpenLID', "model.bin")
|
| 162 |
-
# nllb = load_model('facebook/fasttext-language-identification', "model.bin")
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
# MODELS
|
| 166 |
-
model_xlmr_large = load_model_pipeline('dsfsi/za-xlmrlarge-lid', "model.bin")
|
| 167 |
-
model_serengeti = load_model_pipeline('dsfsi/za-serengeti-lid', "model.bin")
|
| 168 |
-
model_afriberta = load_model_pipeline('dsfsi/za-afriberta-lid', "model.bin")
|
| 169 |
-
model_afroxlmr_base = load_model_pipeline('dsfsi/za-afro-xlmr-base-lid', "model.bin")
|
| 170 |
-
model_afrolm = load_model_pipeline('dsfsi/za-afrolm-lid', "model.bin")
|
| 171 |
-
za_lid = load_model_pipeline('dsfsi/za-lid-bert', "model.bin")
|
| 172 |
-
openlid = load_model('laurievb/OpenLID', "model.bin")
|
| 173 |
-
glotlid_3 = load_model(constants.MODEL_NAME, "model_v3.bin")
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
# @st.cache_resource
|
| 177 |
-
def plot(label, prob):
|
| 178 |
-
|
| 179 |
-
ORANGE_COLOR = "#FF8000"
|
| 180 |
-
BLACK_COLOR = "#31333F"
|
| 181 |
-
fig, ax = plt.subplots(figsize=(8, 1))
|
| 182 |
-
fig.patch.set_facecolor("none")
|
| 183 |
-
ax.set_facecolor("none")
|
| 184 |
-
|
| 185 |
-
ax.spines["left"].set_color(BLACK_COLOR)
|
| 186 |
-
ax.spines["bottom"].set_color(BLACK_COLOR)
|
| 187 |
-
ax.tick_params(axis="x", colors=BLACK_COLOR)
|
| 188 |
-
|
| 189 |
-
ax.spines[["right", "top"]].set_visible(False)
|
| 190 |
-
|
| 191 |
-
ax.barh(y=[0], width=[prob], color=ORANGE_COLOR)
|
| 192 |
-
ax.set_xlim(0, 1)
|
| 193 |
-
ax.set_ylim(-1, 1)
|
| 194 |
-
ax.set_title(f"Label: {label}, Language: {get_name(label)}", color=BLACK_COLOR)
|
| 195 |
-
ax.get_yaxis().set_visible(False)
|
| 196 |
-
ax.set_xlabel("Confidence", color=BLACK_COLOR)
|
| 197 |
-
st.pyplot(fig)
|
| 198 |
-
|
| 199 |
-
# @st.cache_resource
|
| 200 |
-
def plot_multiples(models, labels, probs):
|
| 201 |
-
ORANGE_COLOR = "#FF8000"
|
| 202 |
-
BLACK_COLOR = "#31333F"
|
| 203 |
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
ax.spines[["right", "top"]].set_visible(False)
|
| 213 |
-
|
| 214 |
-
# Plot bars for each model, label, and probability
|
| 215 |
-
y_positions = range(len(models)) # Y positions for each model
|
| 216 |
|
| 217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
ax.
|
| 226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
ax.set_xlim(0, 1)
|
| 228 |
-
ax.
|
| 229 |
-
ax.
|
| 230 |
-
|
| 231 |
-
|
| 232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
|
| 234 |
-
def
|
| 235 |
-
"""
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
progress_text = "Computing Language..."
|
| 244 |
-
|
| 245 |
-
if version == 'xlmrlarge':
|
| 246 |
-
model_choice = model_xlmr_large
|
| 247 |
-
elif version == 'serengeti':
|
| 248 |
-
model_choice = model_serengeti
|
| 249 |
-
elif version == 'afriberta':
|
| 250 |
-
model_choice = model_afriberta
|
| 251 |
-
elif version == 'afroxlmrbase':
|
| 252 |
-
model_choice = model_afroxlmr_base
|
| 253 |
-
elif version=='afrolm':
|
| 254 |
-
model_choice = model_afrolm
|
| 255 |
-
elif version == 'BERT':
|
| 256 |
-
model_choice = za_lid
|
| 257 |
-
elif version == 'openlid-201':
|
| 258 |
-
model_choice = openlid
|
| 259 |
-
elif version == 'GlotLID v3':
|
| 260 |
-
model_choice = glotlid_3
|
| 261 |
-
else:
|
| 262 |
-
model_choice = [(model_xlmr_large, "xlmrlarge"),(model_serengeti,"serengeti"), (model_afriberta,"afriberta"), (model_afroxlmr_base,"afroxlmrbase"), (model_afrolm,"afrolm"), (za_lid,"BERT"), (openlid,"openlid-201"), (glotlid_3,"GlotLID v3")]
|
| 263 |
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
|
|
|
| 270 |
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
text=progress_text,
|
| 326 |
-
)
|
| 327 |
-
else:
|
| 328 |
-
output = model_choice.predict(sent)
|
| 329 |
-
output_label = output[0][0].split('__')[-1].replace('_Hans', '_Hani').replace('_Hant', '_Hani')
|
| 330 |
-
output_prob = max(min(output[1][0], 1), 0)
|
| 331 |
-
output_label_language = output_label.split('_')[0]
|
| 332 |
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
main_script, all_scripts = get_script(sent)
|
| 336 |
-
output_label_script = output_label.split('_')[1]
|
| 337 |
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
|
|
|
|
|
|
|
|
|
| 342 |
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
with st.container():
|
| 363 |
-
st.image("logo_transparent_small.png")
|
| 364 |
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
with st.expander("More information about the space"):
|
| 368 |
-
st.write('''
|
| 369 |
-
Authors: Thapelo Sindane, Vukosi Marivate
|
| 370 |
-
''')
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
tab1, tab2 = st.tabs(["Input a Sentence", "Upload a File"])
|
| 374 |
-
|
| 375 |
-
with tab1:
|
| 376 |
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
)
|
| 395 |
-
|
| 396 |
-
# TODO: Check if this is needed!
|
| 397 |
-
|
| 398 |
-
clicked = st.button("Submit")
|
| 399 |
-
|
| 400 |
-
if sent:
|
| 401 |
|
| 402 |
-
|
| 403 |
-
prob = probs[0]
|
| 404 |
-
label = labels[0]
|
| 405 |
-
|
| 406 |
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
with open('logs.txt', 'w') as file:
|
| 410 |
-
pass
|
| 411 |
-
|
| 412 |
-
print(f"{sent}, {label}: {prob}")
|
| 413 |
-
with open("logs.txt", "a") as f:
|
| 414 |
-
f.write(f"{sent}, {label}: {prob}\n")
|
| 415 |
|
| 416 |
-
|
| 417 |
-
if version == "All-Models":
|
| 418 |
-
plot_multiples(["xlmrlarge", "serengeti", "afriberta", "afroxlmrbase", "afrolm", "BERT", "OpenLID", "GlotLID v3"], labels, probs)
|
| 419 |
-
else:
|
| 420 |
-
plot(label, prob)
|
| 421 |
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
if file is not None:
|
| 436 |
-
df = pd.read_csv(file, sep="¦\t¦", header=None, engine='python')
|
| 437 |
-
df.columns = ["Sentence"]
|
| 438 |
-
df.reset_index(drop=True, inplace=True)
|
| 439 |
-
|
| 440 |
-
# TODO: Run the model
|
| 441 |
-
df['Prob'], df["Label"] = compute(df["Sentence"].tolist(), version= version)
|
| 442 |
-
df['Language'] = df["Label"].apply(get_name)
|
| 443 |
-
|
| 444 |
-
# A horizontal rule
|
| 445 |
-
st.markdown("""---""")
|
| 446 |
-
|
| 447 |
-
chart = (
|
| 448 |
-
alt.Chart(df.reset_index())
|
| 449 |
-
.mark_area(color="darkorange", opacity=0.5)
|
| 450 |
-
.encode(
|
| 451 |
-
x=X(field="index", title="Sentence Index"),
|
| 452 |
-
y=Y("Prob", scale=Scale(domain=[0, 1])),
|
| 453 |
-
)
|
| 454 |
-
)
|
| 455 |
-
st.altair_chart(chart.interactive(), use_container_width=True)
|
| 456 |
-
|
| 457 |
-
col1, col2 = st.columns([4, 1])
|
| 458 |
-
|
| 459 |
-
with col1:
|
| 460 |
-
# Display the output
|
| 461 |
-
st.table(
|
| 462 |
-
df,
|
| 463 |
-
)
|
| 464 |
-
|
| 465 |
-
with col2:
|
| 466 |
-
# Add a download button
|
| 467 |
-
csv = convert_df(df)
|
| 468 |
-
st.download_button(
|
| 469 |
-
label=":file_folder: Download predictions as CSV",
|
| 470 |
-
data=csv,
|
| 471 |
-
file_name="GlotLID.csv",
|
| 472 |
-
mime="text/csv",
|
| 473 |
-
)
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
# citation()
|
|
|
|
| 1 |
# coding=utf-8
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import streamlit as st
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
| 5 |
import altair as alt
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
import fasttext
|
| 8 |
+
from huggingface_hub import hf_hub_download
|
| 9 |
import json
|
| 10 |
import os
|
| 11 |
import re
|
| 12 |
+
import string
|
| 13 |
+
import base64
|
| 14 |
+
from typing import List, Tuple, Dict, Optional
|
| 15 |
+
import logging
|
| 16 |
+
|
| 17 |
+
# Configure page
|
| 18 |
+
st.set_page_config(
|
| 19 |
+
page_title="South African Language Identification",
|
| 20 |
+
page_icon="πΏπ¦",
|
| 21 |
+
layout="wide",
|
| 22 |
+
initial_sidebar_state="expanded"
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# Custom CSS for better styling
|
| 26 |
+
st.markdown("""
|
| 27 |
+
<style>
|
| 28 |
+
.main-header {
|
| 29 |
+
text-align: center;
|
| 30 |
+
padding: 1rem 0;
|
| 31 |
+
background: linear-gradient(90deg, #ff6b35, #f7931e);
|
| 32 |
+
color: white;
|
| 33 |
+
border-radius: 10px;
|
| 34 |
+
margin-bottom: 2rem;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
}
|
| 36 |
+
.model-card {
|
| 37 |
+
background: #f8f9fa;
|
| 38 |
+
padding: 1rem;
|
| 39 |
+
border-radius: 8px;
|
| 40 |
+
border-left: 4px solid #ff6b35;
|
| 41 |
+
margin: 1rem 0;
|
| 42 |
+
}
|
| 43 |
+
.result-container {
|
| 44 |
+
background: white;
|
| 45 |
+
padding: 1.5rem;
|
| 46 |
+
border-radius: 10px;
|
| 47 |
+
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
|
| 48 |
+
margin: 1rem 0;
|
| 49 |
+
}
|
| 50 |
+
.metric-card {
|
| 51 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 52 |
+
color: white;
|
| 53 |
+
padding: 1rem;
|
| 54 |
+
border-radius: 8px;
|
| 55 |
+
text-align: center;
|
| 56 |
+
}
|
| 57 |
+
</style>
|
| 58 |
+
""", unsafe_allow_html=True)
|
| 59 |
+
|
| 60 |
+
# Constants and Configuration
|
| 61 |
+
MODEL_CONFIGS = {
|
| 62 |
+
"za-bert": {
|
| 63 |
+
"name": "ZA-BERT",
|
| 64 |
+
"model_id": "dsfsi/za-lid-bert",
|
| 65 |
+
"description": "Lightweight BERT-based model trained on South African languages",
|
| 66 |
+
"recommended": True
|
| 67 |
+
},
|
| 68 |
+
"xlmr-large": {
|
| 69 |
+
"name": "XLM-R Large",
|
| 70 |
+
"model_id": "dsfsi/za-xlmrlarge-lid",
|
| 71 |
+
"description": "XLM-RoBERTa Large model fine-tuned for SA languages"
|
| 72 |
+
},
|
| 73 |
+
"serengeti": {
|
| 74 |
+
"name": "Serengeti",
|
| 75 |
+
"model_id": "dsfsi/za-serengeti-lid",
|
| 76 |
+
"description": "Afri-centric model with superior performance"
|
| 77 |
+
},
|
| 78 |
+
"afriberta": {
|
| 79 |
+
"name": "AfriBERTa",
|
| 80 |
+
"model_id": "dsfsi/za-afriberta-lid",
|
| 81 |
+
"description": "African-focused BERT model"
|
| 82 |
+
},
|
| 83 |
+
"afro-xlmr": {
|
| 84 |
+
"name": "Afro-XLM-R",
|
| 85 |
+
"model_id": "dsfsi/za-afro-xlmr-base-lid",
|
| 86 |
+
"description": "African-centric XLM-RoBERTa model"
|
| 87 |
+
},
|
| 88 |
+
"afrolm": {
|
| 89 |
+
"name": "AfroLM",
|
| 90 |
+
"model_id": "dsfsi/za-afrolm-lid",
|
| 91 |
+
"description": "African language model"
|
| 92 |
+
}
|
| 93 |
+
}
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
+
# Utility Functions
|
| 96 |
@st.cache_data
|
| 97 |
+
def load_language_names() -> Dict[str, str]:
|
| 98 |
+
"""Load language names mapping"""
|
| 99 |
+
try:
|
| 100 |
+
with open("assets/language_names.json", 'r') as f:
|
| 101 |
+
return json.load(f)
|
| 102 |
+
except FileNotFoundError:
|
| 103 |
+
# Fallback mapping for common South African languages
|
| 104 |
+
return {
|
| 105 |
+
"afr": "Afrikaans",
|
| 106 |
+
"eng": "English",
|
| 107 |
+
"nso": "Northern Sotho",
|
| 108 |
+
"sot": "Sesotho",
|
| 109 |
+
"ssw": "Siswati",
|
| 110 |
+
"tsn": "Setswana",
|
| 111 |
+
"tso": "Xitsonga",
|
| 112 |
+
"ven": "Tshivenda",
|
| 113 |
+
"xho": "isiXhosa",
|
| 114 |
+
"zul": "isiZulu",
|
| 115 |
+
"nbl": "isiNdebele",
|
| 116 |
+
"und": "Undetermined"
|
| 117 |
+
}
|
| 118 |
|
| 119 |
@st.cache_resource
|
| 120 |
+
def load_model(model_key: str):
|
| 121 |
+
"""Load and cache models"""
|
| 122 |
+
try:
|
| 123 |
+
config = MODEL_CONFIGS[model_key]
|
| 124 |
+
model = pipeline("text-classification", model=config["model_id"])
|
| 125 |
+
return model
|
| 126 |
+
except Exception as e:
|
| 127 |
+
st.error(f"Error loading model {model_key}: {str(e)}")
|
| 128 |
+
return None
|
| 129 |
+
|
| 130 |
+
def preprocess_text(text: str) -> str:
|
| 131 |
+
"""Clean and preprocess input text"""
|
| 132 |
+
if not text or not text.strip():
|
| 133 |
+
return ""
|
| 134 |
|
| 135 |
+
# Basic cleaning
|
| 136 |
+
text = text.replace('\n', ' ')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
+
# Remove problematic characters
|
| 139 |
+
replacement_map = {ord(c): ' ' for c in ':β’#{|}' + string.digits}
|
| 140 |
+
text = text.translate(replacement_map)
|
| 141 |
+
|
| 142 |
+
# Normalize whitespace
|
| 143 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
| 144 |
+
|
| 145 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
+
def get_language_name(label: str, lang_names: Dict[str, str]) -> str:
|
| 148 |
+
"""Get language name from label"""
|
| 149 |
+
if '_' in label:
|
| 150 |
+
iso_code = label.split('_')[0]
|
| 151 |
+
else:
|
| 152 |
+
iso_code = label
|
| 153 |
+
|
| 154 |
+
return lang_names.get(iso_code, label)
|
| 155 |
|
| 156 |
+
def predict_language(text: str, model, lang_names: Dict[str, str]) -> Tuple[str, float, str]:
|
| 157 |
+
"""Predict language for given text"""
|
| 158 |
+
if not model or not text.strip():
|
| 159 |
+
return "und", 0.0, "Undetermined"
|
| 160 |
+
|
| 161 |
+
try:
|
| 162 |
+
processed_text = preprocess_text(text)
|
| 163 |
+
if not processed_text:
|
| 164 |
+
return "und", 0.0, "Undetermined"
|
| 165 |
+
|
| 166 |
+
result = model(processed_text)
|
| 167 |
+
if isinstance(result, list) and len(result) > 0:
|
| 168 |
+
prediction = result[0]
|
| 169 |
+
label = prediction['label']
|
| 170 |
+
confidence = prediction['score']
|
| 171 |
+
language_name = get_language_name(label, lang_names)
|
| 172 |
+
return label, confidence, language_name
|
| 173 |
+
|
| 174 |
+
return "und", 0.0, "Undetermined"
|
| 175 |
+
|
| 176 |
+
except Exception as e:
|
| 177 |
+
st.error(f"Prediction error: {str(e)}")
|
| 178 |
+
return "und", 0.0, "Error"
|
| 179 |
|
| 180 |
+
def create_confidence_plot(language: str, confidence: float) -> plt.Figure:
|
| 181 |
+
"""Create a confidence visualization"""
|
| 182 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
| 183 |
|
| 184 |
+
# Colors
|
| 185 |
+
primary_color = "#ff6b35"
|
| 186 |
+
bg_color = "#f8f9fa"
|
| 187 |
+
text_color = "#2c3e50"
|
| 188 |
+
|
| 189 |
+
# Create horizontal bar
|
| 190 |
+
ax.barh([0], [confidence], color=primary_color, height=0.6, alpha=0.8)
|
| 191 |
+
ax.barh([0], [1-confidence], left=[confidence], color=bg_color, height=0.6, alpha=0.3)
|
| 192 |
+
|
| 193 |
+
# Styling
|
| 194 |
ax.set_xlim(0, 1)
|
| 195 |
+
ax.set_ylim(-0.5, 0.5)
|
| 196 |
+
ax.set_xlabel("Confidence Score", fontsize=12, color=text_color)
|
| 197 |
+
ax.set_title(f"Language: {language} (Confidence: {confidence:.3f})",
|
| 198 |
+
fontsize=14, fontweight='bold', color=text_color, pad=20)
|
| 199 |
|
| 200 |
+
# Remove y-axis and spines
|
| 201 |
+
ax.set_yticks([])
|
| 202 |
+
ax.spines['top'].set_visible(False)
|
| 203 |
+
ax.spines['right'].set_visible(False)
|
| 204 |
+
ax.spines['left'].set_visible(False)
|
| 205 |
+
|
| 206 |
+
# Add confidence text
|
| 207 |
+
ax.text(confidence/2, 0, f"{confidence:.1%}",
|
| 208 |
+
ha='center', va='center', fontweight='bold', color='white')
|
| 209 |
+
|
| 210 |
+
plt.tight_layout()
|
| 211 |
+
return fig
|
| 212 |
|
| 213 |
+
def render_paper_info():
|
| 214 |
+
"""Render paper information and citation"""
|
| 215 |
+
st.markdown("### π Research Paper")
|
| 216 |
+
|
| 217 |
+
col1, col2 = st.columns([2, 1])
|
| 218 |
+
|
| 219 |
+
with col1:
|
| 220 |
+
st.markdown("""
|
| 221 |
+
**"From N-grams to Pre-trained Multilingual Models For Language Identification"**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
+
*Authors: Thapelo Andrew Sindane, Vukosi Marivate*
|
| 224 |
+
|
| 225 |
+
Published in: Proceedings of the 4th International Conference on Natural Language Processing for Digital Humanities (2024)
|
| 226 |
+
|
| 227 |
+
This research investigates N-gram models and large pre-trained multilingual models for Language Identification
|
| 228 |
+
across 11 South African languages, showing that Serengeti performs best across all model types.
|
| 229 |
+
""")
|
| 230 |
|
| 231 |
+
with col2:
|
| 232 |
+
st.markdown("""
|
| 233 |
+
**Links:**
|
| 234 |
+
- [π Paper](https://aclanthology.org/2024.nlp4dh-1.22/)
|
| 235 |
+
- [π€ HuggingFace](https://huggingface.co/dsfsi)
|
| 236 |
+
- [π» GitHub](https://github.com/dsfsi/za-lid)
|
| 237 |
+
""")
|
| 238 |
+
|
| 239 |
+
def render_citation():
|
| 240 |
+
"""Render BibTeX citation"""
|
| 241 |
+
citation = """@inproceedings{sindane-marivate-2024-n,
|
| 242 |
+
title = "From N-grams to Pre-trained Multilingual Models For Language Identification",
|
| 243 |
+
author = "Sindane, Thapelo Andrew and Marivate, Vukosi",
|
| 244 |
+
editor = "HΓ€mΓ€lΓ€inen, Mika and Γhman, Emily and Miyagawa, So and Alnajjar, Khalid and Bizzoni, Yuri",
|
| 245 |
+
booktitle = "Proceedings of the 4th International Conference on Natural Language Processing for Digital Humanities",
|
| 246 |
+
month = nov,
|
| 247 |
+
year = "2024",
|
| 248 |
+
address = "Miami, USA",
|
| 249 |
+
publisher = "Association for Computational Linguistics",
|
| 250 |
+
url = "https://aclanthology.org/2024.nlp4dh-1.22/",
|
| 251 |
+
doi = "10.18653/v1/2024.nlp4dh-1.22",
|
| 252 |
+
pages = "229--239"
|
| 253 |
+
}"""
|
| 254 |
+
|
| 255 |
+
st.code(citation, language='bibtex')
|
| 256 |
+
|
| 257 |
+
def main():
|
| 258 |
+
# Header
|
| 259 |
+
st.markdown("""
|
| 260 |
+
<div class="main-header">
|
| 261 |
+
<h1>πΏπ¦ South African Language Identification</h1>
|
| 262 |
+
<p>Multilingual Language Detection for South African Languages</p>
|
| 263 |
+
</div>
|
| 264 |
+
""", unsafe_allow_html=True)
|
| 265 |
+
|
| 266 |
+
# Load language names
|
| 267 |
+
lang_names = load_language_names()
|
| 268 |
+
|
| 269 |
+
# Sidebar
|
| 270 |
+
with st.sidebar:
|
| 271 |
+
st.header("βοΈ Model Configuration")
|
| 272 |
+
|
| 273 |
+
# Model selection
|
| 274 |
+
selected_model = st.selectbox(
|
| 275 |
+
"Choose Model:",
|
| 276 |
+
options=list(MODEL_CONFIGS.keys()),
|
| 277 |
+
format_func=lambda x: f"{'β ' if MODEL_CONFIGS[x].get('recommended') else ''}{MODEL_CONFIGS[x]['name']}",
|
| 278 |
+
index=0,
|
| 279 |
+
help="Select the language identification model"
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
# Model info
|
| 283 |
+
model_config = MODEL_CONFIGS[selected_model]
|
| 284 |
+
st.markdown(f"""
|
| 285 |
+
<div class="model-card">
|
| 286 |
+
<h4>{model_config['name']}</h4>
|
| 287 |
+
<p>{model_config['description']}</p>
|
| 288 |
+
</div>
|
| 289 |
+
""", unsafe_allow_html=True)
|
| 290 |
+
|
| 291 |
+
# Supported languages
|
| 292 |
+
st.subheader("π Supported Languages")
|
| 293 |
+
supported_langs = [
|
| 294 |
+
"π΄σ Ίσ ‘σ Ίσ ‘σ Ώ Afrikaans", "π¬π§ English", "π Northern Sotho",
|
| 295 |
+
"π Sesotho", "π Siswati", "π Setswana",
|
| 296 |
+
"π Xitsonga", "π Tshivenda", "π isiXhosa",
|
| 297 |
+
"π isiZulu", "π isiNdebele"
|
| 298 |
+
]
|
| 299 |
+
for lang in supported_langs:
|
| 300 |
+
st.write(f"β’ {lang}")
|
| 301 |
+
|
| 302 |
+
# Main content
|
| 303 |
+
tab1, tab2, tab3 = st.tabs(["π Single Text", "π Bulk Analysis", "π About"])
|
| 304 |
+
|
| 305 |
+
with tab1:
|
| 306 |
+
st.header("Single Text Analysis")
|
| 307 |
+
|
| 308 |
+
# Text input
|
| 309 |
+
user_text = st.text_area(
|
| 310 |
+
"Enter text to identify language:",
|
| 311 |
+
placeholder="Type or paste your text here...",
|
| 312 |
+
height=100,
|
| 313 |
+
help="Enter text in any South African language"
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
col1, col2, col3 = st.columns([1, 1, 2])
|
| 317 |
+
|
| 318 |
+
with col1:
|
| 319 |
+
analyze_button = st.button("π Analyze", type="primary", use_container_width=True)
|
| 320 |
+
|
| 321 |
+
with col2:
|
| 322 |
+
clear_button = st.button("ποΈ Clear", use_container_width=True)
|
| 323 |
+
if clear_button:
|
| 324 |
+
st.rerun()
|
| 325 |
+
|
| 326 |
+
if analyze_button and user_text.strip():
|
| 327 |
+
with st.spinner("Analyzing language..."):
|
| 328 |
+
# Load model
|
| 329 |
+
model = load_model(selected_model)
|
| 330 |
+
|
| 331 |
+
if model:
|
| 332 |
+
# Predict
|
| 333 |
+
label, confidence, language_name = predict_language(user_text, model, lang_names)
|
| 334 |
|
| 335 |
+
# Results
|
| 336 |
+
st.markdown("### π Results")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
|
| 338 |
+
# Metrics
|
| 339 |
+
col1, col2, col3 = st.columns(3)
|
|
|
|
|
|
|
| 340 |
|
| 341 |
+
with col1:
|
| 342 |
+
st.markdown(f"""
|
| 343 |
+
<div class="metric-card">
|
| 344 |
+
<h3>{language_name}</h3>
|
| 345 |
+
<p>Detected Language</p>
|
| 346 |
+
</div>
|
| 347 |
+
""", unsafe_allow_html=True)
|
| 348 |
|
| 349 |
+
with col2:
|
| 350 |
+
st.markdown(f"""
|
| 351 |
+
<div class="metric-card">
|
| 352 |
+
<h3>{confidence:.1%}</h3>
|
| 353 |
+
<p>Confidence</p>
|
| 354 |
+
</div>
|
| 355 |
+
""", unsafe_allow_html=True)
|
| 356 |
|
| 357 |
+
with col3:
|
| 358 |
+
st.markdown(f"""
|
| 359 |
+
<div class="metric-card">
|
| 360 |
+
<h3>{label}</h3>
|
| 361 |
+
<p>Language Code</p>
|
| 362 |
+
</div>
|
| 363 |
+
""", unsafe_allow_html=True)
|
| 364 |
+
|
| 365 |
+
# Confidence visualization
|
| 366 |
+
st.markdown("### π Confidence Visualization")
|
| 367 |
+
fig = create_confidence_plot(language_name, confidence)
|
| 368 |
+
st.pyplot(fig)
|
| 369 |
+
|
| 370 |
+
else:
|
| 371 |
+
st.error("Failed to load the model. Please try again.")
|
|
|
|
|
|
|
| 372 |
|
| 373 |
+
elif analyze_button:
|
| 374 |
+
st.warning("Please enter some text to analyze.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
|
| 376 |
+
with tab2:
|
| 377 |
+
st.header("Bulk Text Analysis")
|
| 378 |
+
|
| 379 |
+
uploaded_file = st.file_uploader(
|
| 380 |
+
"Upload a text file",
|
| 381 |
+
type=['txt', 'csv'],
|
| 382 |
+
help="Upload a .txt file with one sentence per line, or a CSV file with a 'text' column"
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
if uploaded_file:
|
| 386 |
+
try:
|
| 387 |
+
# Read file
|
| 388 |
+
if uploaded_file.name.endswith('.csv'):
|
| 389 |
+
df = pd.read_csv(uploaded_file)
|
| 390 |
+
if 'text' not in df.columns:
|
| 391 |
+
st.error("CSV file must contain a 'text' column")
|
| 392 |
+
st.stop()
|
| 393 |
+
texts = df['text'].astype(str).tolist()
|
| 394 |
+
else:
|
| 395 |
+
content = uploaded_file.read().decode('utf-8')
|
| 396 |
+
texts = [line.strip() for line in content.split('\n') if line.strip()]
|
| 397 |
+
|
| 398 |
+
st.success(f"Loaded {len(texts)} texts for analysis")
|
| 399 |
+
|
| 400 |
+
if st.button("π Analyze All", type="primary"):
|
| 401 |
+
model = load_model(selected_model)
|
| 402 |
+
|
| 403 |
+
if model:
|
| 404 |
+
results = []
|
| 405 |
+
progress_bar = st.progress(0)
|
| 406 |
+
|
| 407 |
+
for i, text in enumerate(texts):
|
| 408 |
+
label, confidence, language_name = predict_language(text, model, lang_names)
|
| 409 |
+
results.append({
|
| 410 |
+
'Text': text[:100] + '...' if len(text) > 100 else text,
|
| 411 |
+
'Language': language_name,
|
| 412 |
+
'Code': label,
|
| 413 |
+
'Confidence': confidence
|
| 414 |
+
})
|
| 415 |
+
progress_bar.progress((i + 1) / len(texts))
|
| 416 |
+
|
| 417 |
+
# Results DataFrame
|
| 418 |
+
results_df = pd.DataFrame(results)
|
| 419 |
+
|
| 420 |
+
# Display results
|
| 421 |
+
st.markdown("### π Analysis Results")
|
| 422 |
+
st.dataframe(results_df, use_container_width=True)
|
| 423 |
+
|
| 424 |
+
# Summary statistics
|
| 425 |
+
col1, col2 = st.columns(2)
|
| 426 |
+
|
| 427 |
+
with col1:
|
| 428 |
+
st.markdown("### π Language Distribution")
|
| 429 |
+
lang_counts = results_df['Language'].value_counts()
|
| 430 |
+
st.bar_chart(lang_counts)
|
| 431 |
+
|
| 432 |
+
with col2:
|
| 433 |
+
st.markdown("### π Average Confidence by Language")
|
| 434 |
+
avg_conf = results_df.groupby('Language')['Confidence'].mean().sort_values(ascending=False)
|
| 435 |
+
st.bar_chart(avg_conf)
|
| 436 |
+
|
| 437 |
+
# Download button
|
| 438 |
+
csv_data = results_df.to_csv(index=False)
|
| 439 |
+
st.download_button(
|
| 440 |
+
label="π₯ Download Results (CSV)",
|
| 441 |
+
data=csv_data,
|
| 442 |
+
file_name="language_identification_results.csv",
|
| 443 |
+
mime="text/csv"
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
else:
|
| 447 |
+
st.error("Failed to load the model.")
|
| 448 |
+
|
| 449 |
+
except Exception as e:
|
| 450 |
+
st.error(f"Error processing file: {str(e)}")
|
| 451 |
|
| 452 |
+
with tab3:
|
| 453 |
+
render_paper_info()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 454 |
|
| 455 |
+
st.markdown("---")
|
|
|
|
|
|
|
|
|
|
| 456 |
|
| 457 |
+
st.markdown("### π Citation")
|
| 458 |
+
render_citation()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 459 |
|
| 460 |
+
st.markdown("---")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
|
| 462 |
+
st.markdown("""
|
| 463 |
+
### ποΈ Acknowledgments
|
| 464 |
+
|
| 465 |
+
This work is part of the Data Science for Social Impact Research Group at the University of Pretoria.
|
| 466 |
+
|
| 467 |
+
**Contact:**
|
| 468 |
+
- π§ Email: [email protected].za
|
| 469 |
+
- π¦ Twitter: [@VukosiiM](https://twitter.com/VukosiiM)
|
| 470 |
+
- π Website: [dsfsi.github.io](https://dsfsi.github.io)
|
| 471 |
+
""")
|
| 472 |
+
|
| 473 |
+
if __name__ == "__main__":
|
| 474 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|