Spaces:
Running
Running
donbr
commited on
Commit
·
b495719
1
Parent(s):
ab78124
temp fix for app.py
Browse files- .gitignore +3 -0
- .python-version +1 -0
- app.py +75 -227
- app2.py +279 -0
- requirements.txt +1 -0
.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.venv/
|
| 2 |
+
log.csv
|
| 3 |
+
python.version
|
.python-version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
3.10.11
|
app.py
CHANGED
|
@@ -1,59 +1,22 @@
|
|
|
|
|
| 1 |
import json
|
| 2 |
-
from typing import Dict, Union, List
|
| 3 |
-
from gliner import GLiNER
|
| 4 |
-
import gradio as gr
|
| 5 |
-
import os
|
| 6 |
-
|
| 7 |
-
# Load available models
|
| 8 |
-
MODELS = {
|
| 9 |
-
"GLiNER Medium v2.1": "urchade/gliner_medium-v2.1",
|
| 10 |
-
"NuNER Zero": "numind/NuZero_token",
|
| 11 |
-
"GLiNER Multi PII": "urchade/gliner_multi_pii-v1"
|
| 12 |
-
}
|
| 13 |
-
|
| 14 |
-
# Example datasets with descriptions
|
| 15 |
-
EXAMPLE_SETS = {
|
| 16 |
-
"General NER": "examples.json",
|
| 17 |
-
"NuNER Zero": "examples-nuner.json",
|
| 18 |
-
"PII Detection": "examples-pii.json"
|
| 19 |
-
}
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
def load_example_set(example_set_name):
|
| 28 |
-
"""Load a set of examples from the specified file"""
|
| 29 |
-
try:
|
| 30 |
-
file_path = EXAMPLE_SETS[example_set_name]
|
| 31 |
-
with open(file_path, "r", encoding="utf-8") as f:
|
| 32 |
-
examples = json.load(f)
|
| 33 |
-
return examples
|
| 34 |
-
except (KeyError, FileNotFoundError, json.JSONDecodeError) as e:
|
| 35 |
-
print(f"Error loading example set {example_set_name}: {e}")
|
| 36 |
-
return []
|
| 37 |
-
|
| 38 |
-
# Load default example set
|
| 39 |
-
current_examples = load_example_set("General NER")
|
| 40 |
|
| 41 |
-
|
| 42 |
-
"""Load model if not already loaded"""
|
| 43 |
-
if model_name not in loaded_models:
|
| 44 |
-
model_path = MODELS[model_name]
|
| 45 |
-
loaded_models[model_name] = GLiNER.from_pretrained(model_path)
|
| 46 |
-
return loaded_models[model_name]
|
| 47 |
|
| 48 |
def merge_entities(entities):
|
| 49 |
-
"""Merge adjacent entities of the same type"""
|
| 50 |
if not entities:
|
| 51 |
return []
|
| 52 |
merged = []
|
| 53 |
current = entities[0]
|
| 54 |
for next_entity in entities[1:]:
|
| 55 |
-
if
|
| 56 |
-
(next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end'])):
|
| 57 |
current['word'] += ' ' + next_entity['word']
|
| 58 |
current['end'] = next_entity['end']
|
| 59 |
else:
|
|
@@ -63,217 +26,102 @@ def merge_entities(entities):
|
|
| 63 |
return merged
|
| 64 |
|
| 65 |
def ner(
|
| 66 |
-
text: str,
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
nested_ner: bool,
|
| 71 |
-
merge_entities_toggle: bool
|
| 72 |
-
) -> Dict[str, Union[str, List]]:
|
| 73 |
-
"""Run named entity recognition with selected model and parameters"""
|
| 74 |
-
|
| 75 |
-
# Get the selected model
|
| 76 |
-
model = get_model(model_name)
|
| 77 |
-
|
| 78 |
-
# Split labels
|
| 79 |
-
label_list = [label.strip() for label in labels.split(",")]
|
| 80 |
-
|
| 81 |
-
# Predict entities
|
| 82 |
-
entities = [
|
| 83 |
-
{
|
| 84 |
-
"entity": entity["label"],
|
| 85 |
-
"word": entity["text"],
|
| 86 |
-
"start": entity["start"],
|
| 87 |
-
"end": entity["end"],
|
| 88 |
-
"score": entity.get("score", 0),
|
| 89 |
-
}
|
| 90 |
-
for entity in model.predict_entities(
|
| 91 |
-
text, label_list, flat_ner=not nested_ner, threshold=threshold
|
| 92 |
-
)
|
| 93 |
-
]
|
| 94 |
-
|
| 95 |
-
# Merge entities if enabled
|
| 96 |
-
if merge_entities_toggle:
|
| 97 |
-
entities = merge_entities(entities)
|
| 98 |
-
|
| 99 |
-
# Return results
|
| 100 |
-
return {
|
| 101 |
"text": text,
|
| 102 |
-
"entities":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
}
|
|
|
|
|
|
|
| 104 |
|
| 105 |
-
|
| 106 |
-
"""Load a specific example by index from the current example set"""
|
| 107 |
-
if not current_examples or example_idx >= len(current_examples):
|
| 108 |
-
return "", "", 0.3, False, False
|
| 109 |
-
|
| 110 |
-
example = current_examples[example_idx]
|
| 111 |
-
return example[0], example[1], example[2], example[3], False
|
| 112 |
-
|
| 113 |
-
def switch_example_set(example_set_name):
|
| 114 |
-
"""Switch to a different example set and update the interface"""
|
| 115 |
-
global current_examples
|
| 116 |
-
current_examples = load_example_set(example_set_name)
|
| 117 |
-
|
| 118 |
-
# Return the first example from the new set
|
| 119 |
-
if current_examples:
|
| 120 |
-
example = current_examples[0]
|
| 121 |
-
# Return example text, labels, threshold, nested_ner, merge status, example names for dropdown
|
| 122 |
-
example_names = [f"Example {i+1}" for i in range(len(current_examples))]
|
| 123 |
-
return example[0], example[1], example[2], example[3], False, gr.Dropdown.update(choices=example_names, value="Example 1")
|
| 124 |
-
else:
|
| 125 |
-
return "", "", 0.3, False, False, gr.Dropdown.update(choices=[], value=None)
|
| 126 |
-
|
| 127 |
-
with gr.Blocks(title="Unified NER Interface") as demo:
|
| 128 |
gr.Markdown(
|
| 129 |
"""
|
| 130 |
-
#
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
##
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
- Select different models
|
| 141 |
-
- Switch between example sets for different use cases
|
| 142 |
-
- Toggle nested entity recognition
|
| 143 |
-
- Toggle entity merging (combining adjacent entities of the same type)
|
| 144 |
-
- Select from various examples within each set
|
| 145 |
"""
|
| 146 |
)
|
| 147 |
-
|
| 148 |
-
with gr.Row():
|
| 149 |
-
model_dropdown = gr.Dropdown(
|
| 150 |
-
choices=list(MODELS.keys()),
|
| 151 |
-
value=list(MODELS.keys())[0],
|
| 152 |
-
label="Model",
|
| 153 |
-
info="Select the NER model to use"
|
| 154 |
-
)
|
| 155 |
-
example_set_dropdown = gr.Dropdown(
|
| 156 |
-
choices=list(EXAMPLE_SETS.keys()),
|
| 157 |
-
value="General NER",
|
| 158 |
-
label="Example Set",
|
| 159 |
-
info="Select a set of example texts"
|
| 160 |
-
)
|
| 161 |
-
|
| 162 |
-
with gr.Row():
|
| 163 |
-
example_dropdown = gr.Dropdown(
|
| 164 |
-
choices=[f"Example {i+1}" for i in range(len(current_examples))],
|
| 165 |
-
value="Example 1",
|
| 166 |
-
label="Example",
|
| 167 |
-
info="Select a specific example text"
|
| 168 |
-
)
|
| 169 |
-
|
| 170 |
input_text = gr.Textbox(
|
| 171 |
-
value=
|
| 172 |
-
label="Text input",
|
| 173 |
-
placeholder="Enter your text here",
|
| 174 |
-
lines=5
|
| 175 |
)
|
| 176 |
-
|
| 177 |
-
with gr.Row():
|
| 178 |
labels = gr.Textbox(
|
| 179 |
-
value=
|
| 180 |
-
label="
|
| 181 |
placeholder="Enter your labels here (comma separated)",
|
| 182 |
scale=2,
|
| 183 |
)
|
| 184 |
threshold = gr.Slider(
|
| 185 |
0,
|
| 186 |
1,
|
| 187 |
-
value=
|
| 188 |
step=0.01,
|
| 189 |
-
label="
|
| 190 |
info="Lower the threshold to increase how many entities get predicted.",
|
| 191 |
scale=1,
|
| 192 |
)
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
|
|
|
| 206 |
output = gr.HighlightedText(label="Predicted Entities")
|
| 207 |
submit_btn = gr.Button("Submit")
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
)
|
| 215 |
-
|
| 216 |
-
# Handling example selection within a set
|
| 217 |
-
example_dropdown.change(
|
| 218 |
-
fn=lambda idx: load_example(int(idx.split()[1]) - 1),
|
| 219 |
-
inputs=[example_dropdown],
|
| 220 |
-
outputs=[input_text, labels, threshold, nested_ner, merge_entities_toggle]
|
| 221 |
-
)
|
| 222 |
-
|
| 223 |
-
# Add a model recommendation for the example set
|
| 224 |
-
def recommend_model(example_set_name):
|
| 225 |
-
"""Recommend appropriate model based on example set"""
|
| 226 |
-
if example_set_name == "PII Detection":
|
| 227 |
-
return gr.Dropdown.update(value="GLiNER Multi PII")
|
| 228 |
-
elif example_set_name == "NuNER Zero":
|
| 229 |
-
return gr.Dropdown.update(value="NuNER Zero")
|
| 230 |
-
else:
|
| 231 |
-
return gr.Dropdown.update(value="GLiNER Medium v2.1")
|
| 232 |
-
|
| 233 |
-
# Auto-suggest model when changing example set
|
| 234 |
-
example_set_dropdown.change(
|
| 235 |
-
fn=recommend_model,
|
| 236 |
-
inputs=[example_set_dropdown],
|
| 237 |
-
outputs=[model_dropdown]
|
| 238 |
-
)
|
| 239 |
-
|
| 240 |
# Submitting
|
| 241 |
-
submit_btn.click(
|
| 242 |
-
fn=ner,
|
| 243 |
-
inputs=[input_text, labels, model_dropdown, threshold, nested_ner, merge_entities_toggle],
|
| 244 |
-
outputs=output
|
| 245 |
-
)
|
| 246 |
input_text.submit(
|
| 247 |
-
fn=ner,
|
| 248 |
-
inputs=[input_text, labels, model_dropdown, threshold, nested_ner, merge_entities_toggle],
|
| 249 |
-
outputs=output
|
| 250 |
)
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
model_dropdown.change(
|
| 254 |
-
fn=ner,
|
| 255 |
-
inputs=[input_text, labels, model_dropdown, threshold, nested_ner, merge_entities_toggle],
|
| 256 |
-
outputs=output
|
| 257 |
)
|
| 258 |
-
|
| 259 |
threshold.release(
|
| 260 |
-
fn=ner,
|
| 261 |
-
inputs=[input_text, labels, model_dropdown, threshold, nested_ner, merge_entities_toggle],
|
| 262 |
-
outputs=output
|
| 263 |
)
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
fn=ner,
|
| 267 |
-
inputs=[input_text, labels, model_dropdown, threshold, nested_ner, merge_entities_toggle],
|
| 268 |
-
outputs=output
|
| 269 |
)
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
fn=ner,
|
| 273 |
-
inputs=[input_text, labels, model_dropdown, threshold, nested_ner, merge_entities_toggle],
|
| 274 |
-
outputs=output
|
| 275 |
)
|
| 276 |
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
demo.launch(debug=True)
|
|
|
|
| 1 |
+
# import examples object from examples.json file
|
| 2 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
+
with open("examples.json", "r") as f:
|
| 5 |
+
examples = json.load(f)
|
| 6 |
|
| 7 |
+
from typing import Dict, Union
|
| 8 |
+
from gliner import GLiNER
|
| 9 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
model = GLiNER.from_pretrained("urchade/gliner_medium-v2.1")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def merge_entities(entities):
|
|
|
|
| 14 |
if not entities:
|
| 15 |
return []
|
| 16 |
merged = []
|
| 17 |
current = entities[0]
|
| 18 |
for next_entity in entities[1:]:
|
| 19 |
+
if next_entity['entity'] == current['entity'] and (next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end']):
|
|
|
|
| 20 |
current['word'] += ' ' + next_entity['word']
|
| 21 |
current['end'] = next_entity['end']
|
| 22 |
else:
|
|
|
|
| 26 |
return merged
|
| 27 |
|
| 28 |
def ner(
|
| 29 |
+
text, labels: str, threshold: float, nested_ner: bool
|
| 30 |
+
) -> Dict[str, Union[str, int, float]]:
|
| 31 |
+
labels = labels.split(",")
|
| 32 |
+
r = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
"text": text,
|
| 34 |
+
"entities": [
|
| 35 |
+
{
|
| 36 |
+
"entity": entity["label"],
|
| 37 |
+
"word": entity["text"],
|
| 38 |
+
"start": entity["start"],
|
| 39 |
+
"end": entity["end"],
|
| 40 |
+
"score": 0,
|
| 41 |
+
}
|
| 42 |
+
for entity in model.predict_entities(
|
| 43 |
+
text, labels, flat_ner=not nested_ner, threshold=threshold
|
| 44 |
+
)
|
| 45 |
+
],
|
| 46 |
}
|
| 47 |
+
# r["entities"] = merge_entities(r["entities"])
|
| 48 |
+
return r
|
| 49 |
|
| 50 |
+
with gr.Blocks(title="GLiNER-medium-v2.1") as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
gr.Markdown(
|
| 52 |
"""
|
| 53 |
+
# GLiNER Testbed
|
| 54 |
+
|
| 55 |
+
GLiNER is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoder (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios. This model has the commercially permissive Apache 2.0 license.
|
| 56 |
+
|
| 57 |
+
## Links
|
| 58 |
+
|
| 59 |
+
* Model: https://huggingface.co/urchade/gliner_medium-v2.1
|
| 60 |
+
* All GLiNER models: https://huggingface.co/models?library=gliner
|
| 61 |
+
* Paper: https://arxiv.org/abs/2311.08526
|
| 62 |
+
* Repository: https://github.com/urchade/GLiNER
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
"""
|
| 64 |
)
|
| 65 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
input_text = gr.Textbox(
|
| 67 |
+
value=examples[0][0], label="Text input", placeholder="Enter your text here"
|
|
|
|
|
|
|
|
|
|
| 68 |
)
|
| 69 |
+
with gr.Row() as row:
|
|
|
|
| 70 |
labels = gr.Textbox(
|
| 71 |
+
value=examples[0][1],
|
| 72 |
+
label="Labels",
|
| 73 |
placeholder="Enter your labels here (comma separated)",
|
| 74 |
scale=2,
|
| 75 |
)
|
| 76 |
threshold = gr.Slider(
|
| 77 |
0,
|
| 78 |
1,
|
| 79 |
+
value=0.3,
|
| 80 |
step=0.01,
|
| 81 |
+
label="Threshold",
|
| 82 |
info="Lower the threshold to increase how many entities get predicted.",
|
| 83 |
scale=1,
|
| 84 |
)
|
| 85 |
+
with gr.Column() as col:
|
| 86 |
+
nested_ner = gr.Checkbox(
|
| 87 |
+
value=examples[0][2],
|
| 88 |
+
label="Nested NER",
|
| 89 |
+
info="Allow for nested NER?",
|
| 90 |
+
scale=0,
|
| 91 |
+
)
|
| 92 |
+
merged_ent = gr.Checkbox(
|
| 93 |
+
#value=examples[0][3],
|
| 94 |
+
value=False,
|
| 95 |
+
label="Merged Entities",
|
| 96 |
+
info="Merge adjacent entities?",
|
| 97 |
+
scale=0,
|
| 98 |
+
)
|
| 99 |
output = gr.HighlightedText(label="Predicted Entities")
|
| 100 |
submit_btn = gr.Button("Submit")
|
| 101 |
+
examples = gr.Examples(
|
| 102 |
+
examples,
|
| 103 |
+
fn=ner,
|
| 104 |
+
inputs=[input_text, labels, threshold, nested_ner],
|
| 105 |
+
outputs=output,
|
| 106 |
+
cache_examples=True,
|
| 107 |
)
|
| 108 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
# Submitting
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
input_text.submit(
|
| 111 |
+
fn=ner, inputs=[input_text, labels, threshold, nested_ner], outputs=output
|
|
|
|
|
|
|
| 112 |
)
|
| 113 |
+
labels.submit(
|
| 114 |
+
fn=ner, inputs=[input_text, labels, threshold, nested_ner], outputs=output
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
)
|
|
|
|
| 116 |
threshold.release(
|
| 117 |
+
fn=ner, inputs=[input_text, labels, threshold, nested_ner], outputs=output
|
|
|
|
|
|
|
| 118 |
)
|
| 119 |
+
submit_btn.click(
|
| 120 |
+
fn=ner, inputs=[input_text, labels, threshold, nested_ner], outputs=output
|
|
|
|
|
|
|
|
|
|
| 121 |
)
|
| 122 |
+
nested_ner.change(
|
| 123 |
+
fn=ner, inputs=[input_text, labels, threshold, nested_ner], outputs=output
|
|
|
|
|
|
|
|
|
|
| 124 |
)
|
| 125 |
|
| 126 |
+
demo.queue()
|
| 127 |
+
demo.launch(debug=True)
|
|
|
app2.py
ADDED
|
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from typing import Dict, Union, List
|
| 3 |
+
from gliner import GLiNER
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
# Load available models
|
| 8 |
+
MODELS = {
|
| 9 |
+
"GLiNER Medium v2.1": "urchade/gliner_medium-v2.1",
|
| 10 |
+
"NuNER Zero": "numind/NuZero_token",
|
| 11 |
+
"GLiNER Multi PII": "urchade/gliner_multi_pii-v1"
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
# Example datasets with descriptions
|
| 15 |
+
EXAMPLE_SETS = {
|
| 16 |
+
"General NER": "examples.json",
|
| 17 |
+
"NuNER Zero": "examples-nuner.json",
|
| 18 |
+
"PII Detection": "examples-pii.json"
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
# Initialize models (will be loaded on demand)
|
| 22 |
+
loaded_models = {}
|
| 23 |
+
|
| 24 |
+
# Current examples
|
| 25 |
+
current_examples = []
|
| 26 |
+
|
| 27 |
+
def load_example_set(example_set_name):
|
| 28 |
+
"""Load a set of examples from the specified file"""
|
| 29 |
+
try:
|
| 30 |
+
file_path = EXAMPLE_SETS[example_set_name]
|
| 31 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
| 32 |
+
examples = json.load(f)
|
| 33 |
+
return examples
|
| 34 |
+
except (KeyError, FileNotFoundError, json.JSONDecodeError) as e:
|
| 35 |
+
print(f"Error loading example set {example_set_name}: {e}")
|
| 36 |
+
return []
|
| 37 |
+
|
| 38 |
+
# Load default example set
|
| 39 |
+
current_examples = load_example_set("General NER")
|
| 40 |
+
|
| 41 |
+
def get_model(model_name):
|
| 42 |
+
"""Load model if not already loaded"""
|
| 43 |
+
if model_name not in loaded_models:
|
| 44 |
+
model_path = MODELS[model_name]
|
| 45 |
+
loaded_models[model_name] = GLiNER.from_pretrained(model_path)
|
| 46 |
+
return loaded_models[model_name]
|
| 47 |
+
|
| 48 |
+
def merge_entities(entities):
|
| 49 |
+
"""Merge adjacent entities of the same type"""
|
| 50 |
+
if not entities:
|
| 51 |
+
return []
|
| 52 |
+
merged = []
|
| 53 |
+
current = entities[0]
|
| 54 |
+
for next_entity in entities[1:]:
|
| 55 |
+
if (next_entity['entity'] == current['entity'] and
|
| 56 |
+
(next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end'])):
|
| 57 |
+
current['word'] += ' ' + next_entity['word']
|
| 58 |
+
current['end'] = next_entity['end']
|
| 59 |
+
else:
|
| 60 |
+
merged.append(current)
|
| 61 |
+
current = next_entity
|
| 62 |
+
merged.append(current)
|
| 63 |
+
return merged
|
| 64 |
+
|
| 65 |
+
def ner(
|
| 66 |
+
text: str,
|
| 67 |
+
labels: str,
|
| 68 |
+
model_name: str,
|
| 69 |
+
threshold: float,
|
| 70 |
+
nested_ner: bool,
|
| 71 |
+
merge_entities_toggle: bool
|
| 72 |
+
) -> Dict[str, Union[str, List]]:
|
| 73 |
+
"""Run named entity recognition with selected model and parameters"""
|
| 74 |
+
|
| 75 |
+
# Get the selected model
|
| 76 |
+
model = get_model(model_name)
|
| 77 |
+
|
| 78 |
+
# Split labels
|
| 79 |
+
label_list = [label.strip() for label in labels.split(",")]
|
| 80 |
+
|
| 81 |
+
# Predict entities
|
| 82 |
+
entities = [
|
| 83 |
+
{
|
| 84 |
+
"entity": entity["label"],
|
| 85 |
+
"word": entity["text"],
|
| 86 |
+
"start": entity["start"],
|
| 87 |
+
"end": entity["end"],
|
| 88 |
+
"score": entity.get("score", 0),
|
| 89 |
+
}
|
| 90 |
+
for entity in model.predict_entities(
|
| 91 |
+
text, label_list, flat_ner=not nested_ner, threshold=threshold
|
| 92 |
+
)
|
| 93 |
+
]
|
| 94 |
+
|
| 95 |
+
# Merge entities if enabled
|
| 96 |
+
if merge_entities_toggle:
|
| 97 |
+
entities = merge_entities(entities)
|
| 98 |
+
|
| 99 |
+
# Return results
|
| 100 |
+
return {
|
| 101 |
+
"text": text,
|
| 102 |
+
"entities": entities,
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
def load_example(example_idx):
|
| 106 |
+
"""Load a specific example by index from the current example set"""
|
| 107 |
+
if not current_examples or example_idx >= len(current_examples):
|
| 108 |
+
return "", "", 0.3, False, False
|
| 109 |
+
|
| 110 |
+
example = current_examples[example_idx]
|
| 111 |
+
return example[0], example[1], example[2], example[3], False
|
| 112 |
+
|
| 113 |
+
def switch_example_set(example_set_name):
|
| 114 |
+
"""Switch to a different example set and update the interface"""
|
| 115 |
+
global current_examples
|
| 116 |
+
current_examples = load_example_set(example_set_name)
|
| 117 |
+
|
| 118 |
+
# Return the first example from the new set
|
| 119 |
+
if current_examples:
|
| 120 |
+
example = current_examples[0]
|
| 121 |
+
# Return example text, labels, threshold, nested_ner, merge status, example names for dropdown
|
| 122 |
+
example_names = [f"Example {i+1}" for i in range(len(current_examples))]
|
| 123 |
+
return example[0], example[1], example[2], example[3], False, gr.Dropdown.update(choices=example_names, value="Example 1")
|
| 124 |
+
else:
|
| 125 |
+
return "", "", 0.3, False, False, gr.Dropdown.update(choices=[], value=None)
|
| 126 |
+
|
| 127 |
+
with gr.Blocks(title="Unified NER Interface") as demo:
|
| 128 |
+
gr.Markdown(
|
| 129 |
+
"""
|
| 130 |
+
# Unified Zero-shot Named Entity Recognition Interface
|
| 131 |
+
|
| 132 |
+
This interface allows you to compare different zero-shot Named Entity Recognition models.
|
| 133 |
+
|
| 134 |
+
## Models Available:
|
| 135 |
+
- **GLiNER Medium v2.1**: The original GLiNER medium model
|
| 136 |
+
- **NuNER Zero**: A specialized token-based NER model
|
| 137 |
+
- **GLiNER Multi PII**: Fine-tuned for detecting personally identifiable information across multiple languages
|
| 138 |
+
|
| 139 |
+
## Features:
|
| 140 |
+
- Select different models
|
| 141 |
+
- Switch between example sets for different use cases
|
| 142 |
+
- Toggle nested entity recognition
|
| 143 |
+
- Toggle entity merging (combining adjacent entities of the same type)
|
| 144 |
+
- Select from various examples within each set
|
| 145 |
+
"""
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
with gr.Row():
|
| 149 |
+
model_dropdown = gr.Dropdown(
|
| 150 |
+
choices=list(MODELS.keys()),
|
| 151 |
+
value=list(MODELS.keys())[0],
|
| 152 |
+
label="Model",
|
| 153 |
+
info="Select the NER model to use"
|
| 154 |
+
)
|
| 155 |
+
example_set_dropdown = gr.Dropdown(
|
| 156 |
+
choices=list(EXAMPLE_SETS.keys()),
|
| 157 |
+
value="General NER",
|
| 158 |
+
label="Example Set",
|
| 159 |
+
info="Select a set of example texts"
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
with gr.Row():
|
| 163 |
+
example_dropdown = gr.Dropdown(
|
| 164 |
+
choices=[f"Example {i+1}" for i in range(len(current_examples))],
|
| 165 |
+
value="Example 1",
|
| 166 |
+
label="Example",
|
| 167 |
+
info="Select a specific example text"
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
input_text = gr.Textbox(
|
| 171 |
+
value=current_examples[0][0] if current_examples else "",
|
| 172 |
+
label="Text input",
|
| 173 |
+
placeholder="Enter your text here",
|
| 174 |
+
lines=5
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
with gr.Row():
|
| 178 |
+
labels = gr.Textbox(
|
| 179 |
+
value=current_examples[0][1] if current_examples else "",
|
| 180 |
+
label="Entity Labels",
|
| 181 |
+
placeholder="Enter your labels here (comma separated)",
|
| 182 |
+
scale=2,
|
| 183 |
+
)
|
| 184 |
+
threshold = gr.Slider(
|
| 185 |
+
0,
|
| 186 |
+
1,
|
| 187 |
+
value=current_examples[0][2] if current_examples else 0.3,
|
| 188 |
+
step=0.01,
|
| 189 |
+
label="Confidence Threshold",
|
| 190 |
+
info="Lower the threshold to increase how many entities get predicted.",
|
| 191 |
+
scale=1,
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
with gr.Row():
|
| 195 |
+
nested_ner = gr.Checkbox(
|
| 196 |
+
value=current_examples[0][3] if current_examples else False,
|
| 197 |
+
label="Nested NER",
|
| 198 |
+
info="Allow entities to be contained within other entities",
|
| 199 |
+
)
|
| 200 |
+
merge_entities_toggle = gr.Checkbox(
|
| 201 |
+
value=False,
|
| 202 |
+
label="Merge Adjacent Entities",
|
| 203 |
+
info="Combine adjacent entities of the same type into a single entity",
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
output = gr.HighlightedText(label="Predicted Entities")
|
| 207 |
+
submit_btn = gr.Button("Submit")
|
| 208 |
+
|
| 209 |
+
# Handling example set selection
|
| 210 |
+
example_set_dropdown.change(
|
| 211 |
+
fn=switch_example_set,
|
| 212 |
+
inputs=[example_set_dropdown],
|
| 213 |
+
outputs=[input_text, labels, threshold, nested_ner, merge_entities_toggle, example_dropdown]
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
# Handling example selection within a set
|
| 217 |
+
example_dropdown.change(
|
| 218 |
+
fn=lambda idx: load_example(int(idx.split()[1]) - 1),
|
| 219 |
+
inputs=[example_dropdown],
|
| 220 |
+
outputs=[input_text, labels, threshold, nested_ner, merge_entities_toggle]
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
# Add a model recommendation for the example set
|
| 224 |
+
def recommend_model(example_set_name):
|
| 225 |
+
"""Recommend appropriate model based on example set"""
|
| 226 |
+
if example_set_name == "PII Detection":
|
| 227 |
+
return gr.Dropdown.update(value="GLiNER Multi PII")
|
| 228 |
+
elif example_set_name == "NuNER Zero":
|
| 229 |
+
return gr.Dropdown.update(value="NuNER Zero")
|
| 230 |
+
else:
|
| 231 |
+
return gr.Dropdown.update(value="GLiNER Medium v2.1")
|
| 232 |
+
|
| 233 |
+
# Auto-suggest model when changing example set
|
| 234 |
+
example_set_dropdown.change(
|
| 235 |
+
fn=recommend_model,
|
| 236 |
+
inputs=[example_set_dropdown],
|
| 237 |
+
outputs=[model_dropdown]
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
# Submitting
|
| 241 |
+
submit_btn.click(
|
| 242 |
+
fn=ner,
|
| 243 |
+
inputs=[input_text, labels, model_dropdown, threshold, nested_ner, merge_entities_toggle],
|
| 244 |
+
outputs=output
|
| 245 |
+
)
|
| 246 |
+
input_text.submit(
|
| 247 |
+
fn=ner,
|
| 248 |
+
inputs=[input_text, labels, model_dropdown, threshold, nested_ner, merge_entities_toggle],
|
| 249 |
+
outputs=output
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
# Other interactions
|
| 253 |
+
model_dropdown.change(
|
| 254 |
+
fn=ner,
|
| 255 |
+
inputs=[input_text, labels, model_dropdown, threshold, nested_ner, merge_entities_toggle],
|
| 256 |
+
outputs=output
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
threshold.release(
|
| 260 |
+
fn=ner,
|
| 261 |
+
inputs=[input_text, labels, model_dropdown, threshold, nested_ner, merge_entities_toggle],
|
| 262 |
+
outputs=output
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
nested_ner.change(
|
| 266 |
+
fn=ner,
|
| 267 |
+
inputs=[input_text, labels, model_dropdown, threshold, nested_ner, merge_entities_toggle],
|
| 268 |
+
outputs=output
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
merge_entities_toggle.change(
|
| 272 |
+
fn=ner,
|
| 273 |
+
inputs=[input_text, labels, model_dropdown, threshold, nested_ner, merge_entities_toggle],
|
| 274 |
+
outputs=output
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
if __name__ == "__main__":
|
| 278 |
+
demo.queue()
|
| 279 |
+
demo.launch(debug=True)
|
requirements.txt
CHANGED
|
@@ -1,2 +1,3 @@
|
|
|
|
|
| 1 |
gliner
|
| 2 |
scipy==1.12
|
|
|
|
| 1 |
+
gradio
|
| 2 |
gliner
|
| 3 |
scipy==1.12
|