Ready for testing
Browse files- .gitignore +2 -3
- README.md +3 -3
- app.py +44 -50
- configs/{yolo8n-cpu.yaml β yolo8n-416.yaml} +0 -0
- configs/yolo8n-640.yaml +15 -0
- examples/images/road.jpg β downloads/yolo8n-640.onnx +2 -2
- examples/images/{airport.jpg β coast.jpg} +2 -2
- examples/images/{bay.jpg β forest.jpg} +2 -2
- examples/videos/dogs_running.mp4 +0 -3
- examples/videos/fast_and_furious.mp4 +0 -3
- examples/videos/{break_dance.mp4 β forest.mp4} +2 -2
- examples/videos/traffic.mp4 +0 -3
.gitignore
CHANGED
|
@@ -1,6 +1,3 @@
|
|
| 1 |
-
# Virtual environment
|
| 2 |
-
pesar_env/
|
| 3 |
-
|
| 4 |
# Byte-compiled / optimized / DLL files
|
| 5 |
__pycache__/
|
| 6 |
*.py[cod]
|
|
@@ -137,6 +134,8 @@ venv/
|
|
| 137 |
ENV/
|
| 138 |
env.bak/
|
| 139 |
venv.bak/
|
|
|
|
|
|
|
| 140 |
|
| 141 |
# Spyder project settings
|
| 142 |
.spyderproject
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Byte-compiled / optimized / DLL files
|
| 2 |
__pycache__/
|
| 3 |
*.py[cod]
|
|
|
|
| 134 |
ENV/
|
| 135 |
env.bak/
|
| 136 |
venv.bak/
|
| 137 |
+
pisar_env/
|
| 138 |
+
|
| 139 |
|
| 140 |
# Spyder project settings
|
| 141 |
.spyderproject
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: yellow
|
| 6 |
sdk: gradio
|
|
@@ -8,7 +8,7 @@ sdk_version: 5.29.0
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: agpl-3.0
|
| 11 |
-
short_description: '
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: PiSAR
|
| 3 |
+
emoji: π
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: yellow
|
| 6 |
sdk: gradio
|
|
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: agpl-3.0
|
| 11 |
+
short_description: 'Pipelines for Aerial Search and Rescue'
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
|
@@ -24,32 +24,19 @@ from utils import cfg, load_config, load_onnx_model
|
|
| 24 |
|
| 25 |
|
| 26 |
# Configuration constants
|
| 27 |
-
|
| 28 |
-
"yolo8n-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
# "ustc-community/dfine-small-coco",
|
| 34 |
-
# "ustc-community/dfine-large-coco",
|
| 35 |
-
# "ustc-community/dfine-xlarge-coco",
|
| 36 |
-
# "ustc-community/dfine-small-obj365",
|
| 37 |
-
# "ustc-community/dfine-large-obj365",
|
| 38 |
-
# "ustc-community/dfine-xlarge-obj365",
|
| 39 |
-
# "ustc-community/dfine-small-obj2coco",
|
| 40 |
-
# "ustc-community/dfine-large-obj2coco-e25",
|
| 41 |
-
# "ustc-community/dfine-xlarge-obj2coco",
|
| 42 |
-
]
|
| 43 |
-
DEFAULT_CHECKPOINT = CHECKPOINTS[0]
|
| 44 |
-
DEFAULT_CONFIDENCE_THRESHOLD = 0.3
|
| 45 |
|
| 46 |
TORCH_DTYPE = torch.float32
|
| 47 |
|
| 48 |
# Image
|
| 49 |
IMAGE_EXAMPLES = [
|
| 50 |
-
{"path": "./examples/images/
|
| 51 |
-
{"path": "./examples/images/
|
| 52 |
-
{"path": "./examples/images/airport.jpg", "use_url": False, "url": "", "label": "Local Image"},
|
| 53 |
{
|
| 54 |
"path": None,
|
| 55 |
"use_url": True,
|
|
@@ -73,7 +60,7 @@ class TrackingAlgorithm:
|
|
| 73 |
TRACKERS = [None, TrackingAlgorithm.BYTETRACK, TrackingAlgorithm.DEEPSORT, TrackingAlgorithm.SORT]
|
| 74 |
VIDEO_EXAMPLES = [
|
| 75 |
{"path": "./examples/videos/dogs_running.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
|
| 76 |
-
{"path": "./examples/videos/
|
| 77 |
{"path": "./examples/videos/fast_and_furious.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
|
| 78 |
{"path": "./examples/videos/break_dance.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
|
| 79 |
]
|
|
@@ -93,16 +80,15 @@ logging.basicConfig(
|
|
| 93 |
logger = logging.getLogger(__name__)
|
| 94 |
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
return model, image_processor
|
| 101 |
|
| 102 |
|
| 103 |
-
# @spaces.GPU(duration=20)
|
| 104 |
def detect_objects(
|
| 105 |
-
|
|
|
|
| 106 |
images: List[np.ndarray] | np.ndarray,
|
| 107 |
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
|
| 108 |
target_size: Optional[Tuple[int, int]] = None,
|
|
@@ -114,15 +100,20 @@ def detect_objects(
|
|
| 114 |
# model, image_processor = get_model_and_processor(checkpoint)
|
| 115 |
# model = model.to(device)
|
| 116 |
|
| 117 |
-
load_config(cfg, f'configs/{checkpoint}.yaml')
|
| 118 |
-
pipeline = build_pipeline(cfg.pipeline)
|
| 119 |
-
load_onnx_model(pipeline.detector, 'downloads/yolo8n-416.onnx')
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
if classes is not None:
|
| 122 |
-
wrong_classes = [cls for cls in classes if cls not in
|
| 123 |
if wrong_classes:
|
| 124 |
gr.Warning(f"Classes not found in model config: {wrong_classes}")
|
| 125 |
-
keep_ids = [
|
| 126 |
else:
|
| 127 |
keep_ids = None
|
| 128 |
|
|
@@ -142,16 +133,16 @@ def detect_objects(
|
|
| 142 |
# with torch.no_grad():
|
| 143 |
# outputs = model(**inputs)
|
| 144 |
|
| 145 |
-
|
| 146 |
for i in range(len(batch)):
|
| 147 |
img = batch[i]
|
| 148 |
output_ = pipeline(img)
|
| 149 |
-
|
| 150 |
"scores": torch.from_numpy(output_.confidence) if isinstance(output_.confidence, np.ndarray) else output_.confidence,
|
| 151 |
"labels": torch.from_numpy(output_.class_id) if isinstance(output_.class_id, np.ndarray) else output_.class_id,
|
| 152 |
"boxes": torch.from_numpy(output_.xyxy) if isinstance(output_.xyxy, np.ndarray) else output_.xyxy,
|
| 153 |
}
|
| 154 |
-
|
| 155 |
|
| 156 |
|
| 157 |
# postprocess outputs
|
|
@@ -163,16 +154,15 @@ def detect_objects(
|
|
| 163 |
# batch_results = image_processor.post_process_object_detection(
|
| 164 |
# outputs, target_sizes=target_sizes, threshold=confidence_threshold
|
| 165 |
# )
|
| 166 |
-
batch_results = outputs
|
| 167 |
|
| 168 |
results.extend(batch_results)
|
| 169 |
|
| 170 |
-
# move results to cpu
|
| 171 |
-
for i, result in enumerate(results):
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
|
| 177 |
# return results, model.config.id2label
|
| 178 |
return results, pipeline.detector.get_category_mapping()
|
|
@@ -193,9 +183,11 @@ def process_image(
|
|
| 193 |
|
| 194 |
if url:
|
| 195 |
image = load_image(url)
|
| 196 |
-
|
|
|
|
| 197 |
results, id2label = detect_objects(
|
| 198 |
-
|
|
|
|
| 199 |
images=[np.array(image)],
|
| 200 |
confidence_threshold=confidence_threshold,
|
| 201 |
)
|
|
@@ -313,9 +305,11 @@ def process_video(
|
|
| 313 |
else:
|
| 314 |
classes_list = None
|
| 315 |
|
|
|
|
| 316 |
results, id2label = detect_objects(
|
|
|
|
|
|
|
| 317 |
images=np.array(frames),
|
| 318 |
-
checkpoint=checkpoint,
|
| 319 |
confidence_threshold=confidence_threshold,
|
| 320 |
target_size=(target_height, target_width),
|
| 321 |
classes=classes_list,
|
|
@@ -368,7 +362,7 @@ def create_image_inputs() -> List[gr.components.Component]:
|
|
| 368 |
elem_classes="input-component",
|
| 369 |
),
|
| 370 |
gr.Dropdown(
|
| 371 |
-
choices=
|
| 372 |
label="Select Model Checkpoint",
|
| 373 |
value=DEFAULT_CHECKPOINT,
|
| 374 |
elem_classes="input-component",
|
|
@@ -394,7 +388,7 @@ def create_video_inputs() -> List[gr.components.Component]:
|
|
| 394 |
elem_classes="input-component",
|
| 395 |
),
|
| 396 |
gr.Dropdown(
|
| 397 |
-
choices=
|
| 398 |
label="Select Model Checkpoint",
|
| 399 |
value=DEFAULT_CHECKPOINT,
|
| 400 |
elem_classes="input-component",
|
|
|
|
| 24 |
|
| 25 |
|
| 26 |
# Configuration constants
|
| 27 |
+
DETECTORS = {
|
| 28 |
+
"yolo8n-640": 'downloads/yolo8n-640.onnx',
|
| 29 |
+
"yolo8n-416": 'downloads/yolo8n-416.onnx',
|
| 30 |
+
}
|
| 31 |
+
DEFAULT_CHECKPOINT = list(DETECTORS.keys())[0]
|
| 32 |
+
DEFAULT_CONFIDENCE_THRESHOLD = 0.6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
TORCH_DTYPE = torch.float32
|
| 35 |
|
| 36 |
# Image
|
| 37 |
IMAGE_EXAMPLES = [
|
| 38 |
+
{"path": "./examples/images/forest.jpg", "use_url": False, "url": "", "label": "Local Image"},
|
| 39 |
+
{"path": "./examples/images/coast.jpg", "use_url": False, "url": "", "label": "Local Image"},
|
|
|
|
| 40 |
{
|
| 41 |
"path": None,
|
| 42 |
"use_url": True,
|
|
|
|
| 60 |
TRACKERS = [None, TrackingAlgorithm.BYTETRACK, TrackingAlgorithm.DEEPSORT, TrackingAlgorithm.SORT]
|
| 61 |
VIDEO_EXAMPLES = [
|
| 62 |
{"path": "./examples/videos/dogs_running.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
|
| 63 |
+
{"path": "./examples/videos/forest.mp4", "label": "Local Video", "tracker": TrackingAlgorithm.BYTETRACK, "classes": "car, truck, bus"},
|
| 64 |
{"path": "./examples/videos/fast_and_furious.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
|
| 65 |
{"path": "./examples/videos/break_dance.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
|
| 66 |
]
|
|
|
|
| 80 |
logger = logging.getLogger(__name__)
|
| 81 |
|
| 82 |
|
| 83 |
+
def get_pipeline(config: dict, onnx_path: str):
|
| 84 |
+
pipeline = build_pipeline(config)
|
| 85 |
+
load_onnx_model(pipeline.detector, onnx_path)
|
| 86 |
+
return pipeline
|
|
|
|
| 87 |
|
| 88 |
|
|
|
|
| 89 |
def detect_objects(
|
| 90 |
+
config: dict,
|
| 91 |
+
onnx_path: str,
|
| 92 |
images: List[np.ndarray] | np.ndarray,
|
| 93 |
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
|
| 94 |
target_size: Optional[Tuple[int, int]] = None,
|
|
|
|
| 100 |
# model, image_processor = get_model_and_processor(checkpoint)
|
| 101 |
# model = model.to(device)
|
| 102 |
|
| 103 |
+
# load_config(cfg, f'configs/{checkpoint}.yaml')
|
| 104 |
+
# pipeline = build_pipeline(cfg.pipeline)
|
| 105 |
+
# load_onnx_model(pipeline.detector, 'downloads/yolo8n-416.onnx')
|
| 106 |
+
# config.detector.thresholds.confidence = confidence_threshold
|
| 107 |
+
config.defrost()
|
| 108 |
+
config.detector.thresholds.confidence = confidence_threshold
|
| 109 |
+
config.freeze()
|
| 110 |
+
pipeline = get_pipeline(config, onnx_path)
|
| 111 |
+
detector_category_mapping = pipeline.detector.get_category_mapping()
|
| 112 |
if classes is not None:
|
| 113 |
+
wrong_classes = [cls for cls in classes if cls not in detector_category_mapping]
|
| 114 |
if wrong_classes:
|
| 115 |
gr.Warning(f"Classes not found in model config: {wrong_classes}")
|
| 116 |
+
keep_ids = [detector_category_mapping[cls] for cls in classes if cls in detector_category_mapping]
|
| 117 |
else:
|
| 118 |
keep_ids = None
|
| 119 |
|
|
|
|
| 133 |
# with torch.no_grad():
|
| 134 |
# outputs = model(**inputs)
|
| 135 |
|
| 136 |
+
batch_results = []
|
| 137 |
for i in range(len(batch)):
|
| 138 |
img = batch[i]
|
| 139 |
output_ = pipeline(img)
|
| 140 |
+
output = {
|
| 141 |
"scores": torch.from_numpy(output_.confidence) if isinstance(output_.confidence, np.ndarray) else output_.confidence,
|
| 142 |
"labels": torch.from_numpy(output_.class_id) if isinstance(output_.class_id, np.ndarray) else output_.class_id,
|
| 143 |
"boxes": torch.from_numpy(output_.xyxy) if isinstance(output_.xyxy, np.ndarray) else output_.xyxy,
|
| 144 |
}
|
| 145 |
+
batch_results.append(output)
|
| 146 |
|
| 147 |
|
| 148 |
# postprocess outputs
|
|
|
|
| 154 |
# batch_results = image_processor.post_process_object_detection(
|
| 155 |
# outputs, target_sizes=target_sizes, threshold=confidence_threshold
|
| 156 |
# )
|
|
|
|
| 157 |
|
| 158 |
results.extend(batch_results)
|
| 159 |
|
| 160 |
+
# # move results to cpu
|
| 161 |
+
# for i, result in enumerate(results):
|
| 162 |
+
# results[i] = {k: v.cpu() for k, v in result.items()}
|
| 163 |
+
# if keep_ids is not None:
|
| 164 |
+
# keep = torch.isin(results[i]["labels"], torch.tensor(keep_ids))
|
| 165 |
+
# results[i] = {k: v[keep] for k, v in results[i].items()}
|
| 166 |
|
| 167 |
# return results, model.config.id2label
|
| 168 |
return results, pipeline.detector.get_category_mapping()
|
|
|
|
| 183 |
|
| 184 |
if url:
|
| 185 |
image = load_image(url)
|
| 186 |
+
|
| 187 |
+
load_config(cfg, f'configs/{checkpoint}.yaml')
|
| 188 |
results, id2label = detect_objects(
|
| 189 |
+
config=cfg.pipeline,
|
| 190 |
+
onnx_path=DETECTORS[checkpoint],
|
| 191 |
images=[np.array(image)],
|
| 192 |
confidence_threshold=confidence_threshold,
|
| 193 |
)
|
|
|
|
| 305 |
else:
|
| 306 |
classes_list = None
|
| 307 |
|
| 308 |
+
load_config(cfg, f'configs/{checkpoint}.yaml')
|
| 309 |
results, id2label = detect_objects(
|
| 310 |
+
config=cfg.pipeline,
|
| 311 |
+
onnx_path=DETECTORS[checkpoint],
|
| 312 |
images=np.array(frames),
|
|
|
|
| 313 |
confidence_threshold=confidence_threshold,
|
| 314 |
target_size=(target_height, target_width),
|
| 315 |
classes=classes_list,
|
|
|
|
| 362 |
elem_classes="input-component",
|
| 363 |
),
|
| 364 |
gr.Dropdown(
|
| 365 |
+
choices=list(DETECTORS.keys()),
|
| 366 |
label="Select Model Checkpoint",
|
| 367 |
value=DEFAULT_CHECKPOINT,
|
| 368 |
elem_classes="input-component",
|
|
|
|
| 388 |
elem_classes="input-component",
|
| 389 |
),
|
| 390 |
gr.Dropdown(
|
| 391 |
+
choices=list(DETECTORS.keys()),
|
| 392 |
label="Select Model Checkpoint",
|
| 393 |
value=DEFAULT_CHECKPOINT,
|
| 394 |
elem_classes="input-component",
|
configs/{yolo8n-cpu.yaml β yolo8n-416.yaml}
RENAMED
|
File without changes
|
configs/yolo8n-640.yaml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# YOLOv8n + ByteTrack Configuration
|
| 2 |
+
pipeline:
|
| 3 |
+
detector:
|
| 4 |
+
model: yolov8n
|
| 5 |
+
categories: ['LightVehicle', 'Person', 'Building', 'UPole', 'Boat', 'Bike', 'Container', 'Truck', 'Gastank', 'Digger', 'Solarpanels', 'Bus']
|
| 6 |
+
thresholds:
|
| 7 |
+
confidence: 0.6
|
| 8 |
+
iou: 0.4
|
| 9 |
+
slicing:
|
| 10 |
+
overlap: 0.2
|
| 11 |
+
device: cpu
|
| 12 |
+
|
| 13 |
+
tracker:
|
| 14 |
+
algorithm: dummytrack
|
| 15 |
+
|
examples/images/road.jpg β downloads/yolo8n-640.onnx
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:346359fb811146dc1793406cbad1ac5f88dddce172276f24beae789e85d5efba
|
| 3 |
+
size 12259807
|
examples/images/{airport.jpg β coast.jpg}
RENAMED
|
File without changes
|
examples/images/{bay.jpg β forest.jpg}
RENAMED
|
File without changes
|
examples/videos/dogs_running.mp4
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:043c1a28bddcd9beeddbab946c38d1a91de2a18da3ae114d307cd01b30b64ca2
|
| 3 |
-
size 22119043
|
|
|
|
|
|
|
|
|
|
|
|
examples/videos/fast_and_furious.mp4
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:5980eada9d80c65b4da5b536427ccf8ff8ea2707ee3e4aa52fb2c4e1b1979dae
|
| 3 |
-
size 16872922
|
|
|
|
|
|
|
|
|
|
|
|
examples/videos/{break_dance.mp4 β forest.mp4}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a6e1f240ad106045504afbd114e79387cceb11877af61f759f5371c548b6dab6
|
| 3 |
+
size 14931145
|
examples/videos/traffic.mp4
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:71908c136bba6b50b9071fb2015553f651c91a7ee857924f33616c046011aaed
|
| 3 |
-
size 8591523
|
|
|
|
|
|
|
|
|
|
|
|