Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -16,6 +16,8 @@ from anthropic import Anthropic
|
|
| 16 |
import google.generativeai as genai
|
| 17 |
import hmac
|
| 18 |
import hashlib
|
|
|
|
|
|
|
| 19 |
|
| 20 |
load_dotenv()
|
| 21 |
|
|
@@ -32,16 +34,6 @@ if not os.path.exists(DATA_DIR):
|
|
| 32 |
else:
|
| 33 |
st.info(f"`{DATA_DIR}` directory already exists.")
|
| 34 |
|
| 35 |
-
if os.path.exists(DATA_DIR):
|
| 36 |
-
files = os.listdir(DATA_DIR)
|
| 37 |
-
st.write(f"Contents of `{DATA_DIR}` directory:")
|
| 38 |
-
if files:
|
| 39 |
-
for file in files:
|
| 40 |
-
st.write(f"- {file}")
|
| 41 |
-
else:
|
| 42 |
-
st.write("The data directory is currently empty.")
|
| 43 |
-
else:
|
| 44 |
-
st.error(f"`{DATA_DIR}` directory does not exist.")
|
| 45 |
|
| 46 |
def initialize_session_state():
|
| 47 |
if 'api_configured' not in st.session_state:
|
|
@@ -62,8 +54,7 @@ def initialize_session_state():
|
|
| 62 |
st.session_state.last_evaluated_dataset = None
|
| 63 |
|
| 64 |
def setup_api_clients():
|
| 65 |
-
|
| 66 |
-
|
| 67 |
with st.sidebar:
|
| 68 |
st.title("API Configuration")
|
| 69 |
|
|
@@ -76,20 +67,24 @@ def setup_api_clients():
|
|
| 76 |
if st.button("Verify Credentials"):
|
| 77 |
if (hmac.compare_digest(username, os.environ.get("STREAMLIT_USERNAME", "")) and
|
| 78 |
hmac.compare_digest(password, os.environ.get("STREAMLIT_PASSWORD", ""))):
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
else:
|
| 94 |
st.error("Invalid credentials. Please try again or use your own API keys.")
|
| 95 |
st.session_state.api_configured = False
|
|
@@ -120,6 +115,7 @@ def setup_api_clients():
|
|
| 120 |
st.error(f"Error initializing API clients: {str(e)}")
|
| 121 |
st.session_state.api_configured = False
|
| 122 |
|
|
|
|
| 123 |
MAX_CONCURRENT_CALLS = 5
|
| 124 |
semaphore = threading.Semaphore(MAX_CONCURRENT_CALLS)
|
| 125 |
|
|
@@ -145,7 +141,7 @@ def load_dataset_by_name(dataset_name, split="train"):
|
|
| 145 |
}
|
| 146 |
questions.append(question_dict)
|
| 147 |
|
| 148 |
-
st.write(f"Loaded {len(questions)} single-select questions from {dataset_name}")
|
| 149 |
return questions
|
| 150 |
|
| 151 |
@retry(
|
|
@@ -233,14 +229,13 @@ def process_single_evaluation(question, prompt_template, model_name, clients, la
|
|
| 233 |
'options': ' | '.join(question['options']),
|
| 234 |
'model_response': answer,
|
| 235 |
'is_correct': is_correct,
|
| 236 |
-
'explanation': question['explanation']
|
|
|
|
| 237 |
}
|
| 238 |
-
|
| 239 |
with WRITE_LOCK:
|
| 240 |
file_exists = os.path.isfile(RESULTS_FILE)
|
| 241 |
with open(RESULTS_FILE, 'a', encoding='utf-8', newline='') as f:
|
| 242 |
-
|
| 243 |
-
writer.to_csv(f, header=not file_exists, index=False)
|
| 244 |
|
| 245 |
return result
|
| 246 |
|
|
@@ -264,7 +259,6 @@ def process_evaluations_concurrently(questions, prompt_template, models_to_evalu
|
|
| 264 |
current_iteration += 1
|
| 265 |
progress_callback(current_iteration, total_iterations)
|
| 266 |
continue # Skip already completed evaluations
|
| 267 |
-
# Pass last_evaluated_dataset as an argument
|
| 268 |
future = executor.submit(
|
| 269 |
process_single_evaluation,
|
| 270 |
question,
|
|
@@ -283,42 +277,39 @@ def process_evaluations_concurrently(questions, prompt_template, models_to_evalu
|
|
| 283 |
|
| 284 |
return results
|
| 285 |
|
| 286 |
-
def main():
|
| 287 |
-
|
| 288 |
-
initialize_session_state()
|
| 289 |
-
setup_api_clients()
|
| 290 |
-
|
| 291 |
-
if not st.session_state.api_configured:
|
| 292 |
-
st.warning("Please configure API keys in the sidebar to proceed")
|
| 293 |
-
st.stop()
|
| 294 |
|
|
|
|
| 295 |
if 'all_results' not in st.session_state:
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
st.session_state.detailed_model = None
|
| 313 |
-
if 'detailed_dataset' not in st.session_state:
|
| 314 |
-
st.session_state.detailed_dataset = None
|
| 315 |
-
if 'last_evaluated_dataset' not in st.session_state:
|
| 316 |
st.session_state.last_evaluated_dataset = None
|
|
|
|
| 317 |
|
| 318 |
with st.sidebar:
|
| 319 |
if st.button("Reset Results"):
|
| 320 |
if os.path.exists(RESULTS_FILE):
|
| 321 |
os.remove(RESULTS_FILE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
st.session_state.all_results = {}
|
| 323 |
st.session_state.last_evaluated_dataset = None
|
| 324 |
st.success("Results have been reset.")
|
|
@@ -333,14 +324,15 @@ def main():
|
|
| 333 |
help="Choose the dataset to evaluate on"
|
| 334 |
)
|
| 335 |
with col2:
|
| 336 |
-
|
| 337 |
"Select Model(s)",
|
| 338 |
options=list(MODELS.keys()),
|
| 339 |
default=[list(MODELS.keys())[0]],
|
| 340 |
help="Choose one or more models to evaluate."
|
| 341 |
)
|
| 342 |
|
| 343 |
-
models_to_evaluate =
|
|
|
|
| 344 |
|
| 345 |
default_prompt = '''You are a medical AI assistant. Please answer the following multiple choice question.
|
| 346 |
Question: {question}
|
|
@@ -365,13 +357,14 @@ Important:
|
|
| 365 |
- Only the "answer" field will be used for evaluation
|
| 366 |
- Ensure your response is in valid JSON format'''
|
| 367 |
|
|
|
|
| 368 |
col1, col2 = st.columns([2, 1])
|
| 369 |
with col1:
|
| 370 |
prompt_template = st.text_area(
|
| 371 |
"Customize Prompt Template",
|
| 372 |
default_prompt,
|
| 373 |
height=400,
|
| 374 |
-
help="
|
| 375 |
)
|
| 376 |
|
| 377 |
with col2:
|
|
@@ -381,28 +374,34 @@ Important:
|
|
| 381 |
- `{options}`: The multiple choice options
|
| 382 |
""")
|
| 383 |
|
|
|
|
| 384 |
with st.spinner("Loading dataset..."):
|
| 385 |
questions = load_dataset_by_name(selected_dataset)
|
|
|
|
|
|
|
| 386 |
subjects = sorted(list(set(q['subject_name'] for q in questions)))
|
| 387 |
selected_subject = st.selectbox("Filter by subject", ["All"] + subjects)
|
| 388 |
|
| 389 |
if selected_subject != "All":
|
| 390 |
questions = [q for q in questions if q['subject_name'] == selected_subject]
|
| 391 |
|
| 392 |
-
|
|
|
|
|
|
|
| 393 |
|
| 394 |
if st.button("Start Evaluation"):
|
| 395 |
with st.spinner("Starting evaluation..."):
|
| 396 |
selected_questions = questions[:num_questions]
|
| 397 |
|
| 398 |
-
|
| 399 |
clients = {
|
| 400 |
"togetherai": st.session_state["togetherai_client"],
|
| 401 |
"openai": st.session_state["openai_client"],
|
| 402 |
"anthropic": st.session_state["anthropic_client"]
|
| 403 |
}
|
| 404 |
|
| 405 |
-
|
|
|
|
| 406 |
|
| 407 |
progress_container = st.container()
|
| 408 |
progress_bar = progress_container.progress(0)
|
|
@@ -443,7 +442,6 @@ Important:
|
|
| 443 |
if st.session_state.all_results:
|
| 444 |
st.subheader("Evaluation Results")
|
| 445 |
|
| 446 |
-
model_metrics = {}
|
| 447 |
for model_name, results in st.session_state.all_results.items():
|
| 448 |
df = pd.DataFrame(results)
|
| 449 |
metrics = {
|
|
@@ -454,7 +452,6 @@ Important:
|
|
| 454 |
metrics_df = pd.DataFrame(model_metrics).T
|
| 455 |
|
| 456 |
st.subheader("Model Performance Comparison")
|
| 457 |
-
|
| 458 |
accuracy_chart = alt.Chart(
|
| 459 |
metrics_df.reset_index().melt(id_vars=['index'], value_vars=['Accuracy'])
|
| 460 |
).mark_bar().encode(
|
|
@@ -473,7 +470,6 @@ Important:
|
|
| 473 |
)
|
| 474 |
|
| 475 |
st.altair_chart(accuracy_chart, use_container_width=True)
|
| 476 |
-
|
| 477 |
if st.session_state.all_results:
|
| 478 |
st.subheader("Detailed Results")
|
| 479 |
|
|
@@ -518,11 +514,11 @@ Important:
|
|
| 518 |
|
| 519 |
col1, col2 = st.columns(2)
|
| 520 |
with col1:
|
| 521 |
-
st.write("**
|
| 522 |
-
st.code(result.get('
|
| 523 |
with col2:
|
| 524 |
-
st.write("**
|
| 525 |
-
st.code(result.get('
|
| 526 |
|
| 527 |
col1, col2 = st.columns(2)
|
| 528 |
with col1:
|
|
@@ -534,32 +530,20 @@ Important:
|
|
| 534 |
else:
|
| 535 |
st.error("Incorrect")
|
| 536 |
|
| 537 |
-
st.write("**
|
| 538 |
else:
|
| 539 |
st.info(f"No results available for {selected_model_details} on {selected_dataset_details}. Please run the evaluation first.")
|
| 540 |
|
| 541 |
st.markdown("---")
|
|
|
|
| 542 |
all_data = []
|
| 543 |
-
|
| 544 |
for model_name, results in st.session_state.all_results.items():
|
| 545 |
-
for
|
| 546 |
-
row =
|
| 547 |
-
'dataset': st.session_state.last_evaluated_dataset,
|
| 548 |
-
'model': model_name,
|
| 549 |
-
'question': result['question'],
|
| 550 |
-
'correct_answer': result['correct_answer'],
|
| 551 |
-
'subject': result['subject'],
|
| 552 |
-
'options': result['options'],
|
| 553 |
-
'model_response': result['model_response'],
|
| 554 |
-
'is_correct': result['is_correct'],
|
| 555 |
-
'explanation': result['explanation']
|
| 556 |
-
}
|
| 557 |
all_data.append(row)
|
| 558 |
|
| 559 |
complete_df = pd.DataFrame(all_data)
|
| 560 |
-
|
| 561 |
csv = complete_df.to_csv(index=False)
|
| 562 |
-
|
| 563 |
st.download_button(
|
| 564 |
label="Download All Results as CSV",
|
| 565 |
data=csv,
|
|
|
|
| 16 |
import google.generativeai as genai
|
| 17 |
import hmac
|
| 18 |
import hashlib
|
| 19 |
+
from uuid import uuid4
|
| 20 |
+
from datetime import datetime
|
| 21 |
|
| 22 |
load_dotenv()
|
| 23 |
|
|
|
|
| 34 |
else:
|
| 35 |
st.info(f"`{DATA_DIR}` directory already exists.")
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
def initialize_session_state():
|
| 39 |
if 'api_configured' not in st.session_state:
|
|
|
|
| 54 |
st.session_state.last_evaluated_dataset = None
|
| 55 |
|
| 56 |
def setup_api_clients():
|
| 57 |
+
initialize_session_state()
|
|
|
|
| 58 |
with st.sidebar:
|
| 59 |
st.title("API Configuration")
|
| 60 |
|
|
|
|
| 67 |
if st.button("Verify Credentials"):
|
| 68 |
if (hmac.compare_digest(username, os.environ.get("STREAMLIT_USERNAME", "")) and
|
| 69 |
hmac.compare_digest(password, os.environ.get("STREAMLIT_PASSWORD", ""))):
|
| 70 |
+
try:
|
| 71 |
+
st.session_state.togetherai_client = OpenAI(
|
| 72 |
+
api_key=os.getenv('TOGETHERAI_API_KEY'),
|
| 73 |
+
base_url="https://api.together.xyz/v1"
|
| 74 |
+
)
|
| 75 |
+
st.session_state.openai_client = OpenAI(
|
| 76 |
+
api_key=os.getenv('OPENAI_API_KEY')
|
| 77 |
+
)
|
| 78 |
+
st.session_state.anthropic_client = Anthropic(
|
| 79 |
+
api_key=os.getenv('ANTHROPIC_API_KEY')
|
| 80 |
+
)
|
| 81 |
+
genai.configure(api_key=os.environ["GEMINI_API_KEY"])
|
| 82 |
+
|
| 83 |
+
st.session_state.api_configured = True
|
| 84 |
+
st.success("Successfully configured the API clients with stored keys!")
|
| 85 |
+
except Exception as e:
|
| 86 |
+
st.error(f"Error initializing API clients: {str(e)}")
|
| 87 |
+
st.session_state.api_configured = False
|
| 88 |
else:
|
| 89 |
st.error("Invalid credentials. Please try again or use your own API keys.")
|
| 90 |
st.session_state.api_configured = False
|
|
|
|
| 115 |
st.error(f"Error initializing API clients: {str(e)}")
|
| 116 |
st.session_state.api_configured = False
|
| 117 |
|
| 118 |
+
setup_api_clients()
|
| 119 |
MAX_CONCURRENT_CALLS = 5
|
| 120 |
semaphore = threading.Semaphore(MAX_CONCURRENT_CALLS)
|
| 121 |
|
|
|
|
| 141 |
}
|
| 142 |
questions.append(question_dict)
|
| 143 |
|
| 144 |
+
st.write(f"Loaded {len(questions)} single-select questions from `{dataset_name}`")
|
| 145 |
return questions
|
| 146 |
|
| 147 |
@retry(
|
|
|
|
| 229 |
'options': ' | '.join(question['options']),
|
| 230 |
'model_response': answer,
|
| 231 |
'is_correct': is_correct,
|
| 232 |
+
'explanation': question['explanation'],
|
| 233 |
+
'timestamp': datetime.utcnow().isoformat()
|
| 234 |
}
|
|
|
|
| 235 |
with WRITE_LOCK:
|
| 236 |
file_exists = os.path.isfile(RESULTS_FILE)
|
| 237 |
with open(RESULTS_FILE, 'a', encoding='utf-8', newline='') as f:
|
| 238 |
+
pd.DataFrame([result]).to_csv(f, header=not file_exists, index=False)
|
|
|
|
| 239 |
|
| 240 |
return result
|
| 241 |
|
|
|
|
| 259 |
current_iteration += 1
|
| 260 |
progress_callback(current_iteration, total_iterations)
|
| 261 |
continue # Skip already completed evaluations
|
|
|
|
| 262 |
future = executor.submit(
|
| 263 |
process_single_evaluation,
|
| 264 |
question,
|
|
|
|
| 277 |
|
| 278 |
return results
|
| 279 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
|
| 281 |
+
def main():
|
| 282 |
if 'all_results' not in st.session_state:
|
| 283 |
+
st.session_state.all_results = {}
|
| 284 |
+
st.session_state.last_evaluated_dataset = None
|
| 285 |
+
if os.path.exists(RESULTS_FILE):
|
| 286 |
+
existing_df = pd.read_csv(RESULTS_FILE)
|
| 287 |
+
all_results = {}
|
| 288 |
+
for _, row in existing_df.iterrows():
|
| 289 |
+
model = row['model']
|
| 290 |
+
result = row.to_dict()
|
| 291 |
+
if model not in all_results:
|
| 292 |
+
all_results[model] = []
|
| 293 |
+
all_results[model].append(result)
|
| 294 |
+
st.session_state.all_results = all_results
|
| 295 |
+
st.session_state.last_evaluated_dataset = existing_df['dataset'].iloc[-1]
|
| 296 |
+
st.info(f"Loaded existing results from `{RESULTS_FILE}`.")
|
| 297 |
+
else:
|
| 298 |
+
st.session_state.all_results = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
st.session_state.last_evaluated_dataset = None
|
| 300 |
+
st.info(f"No existing results found. Ready to start fresh.")
|
| 301 |
|
| 302 |
with st.sidebar:
|
| 303 |
if st.button("Reset Results"):
|
| 304 |
if os.path.exists(RESULTS_FILE):
|
| 305 |
os.remove(RESULTS_FILE)
|
| 306 |
+
for file in os.listdir(DATA_DIR):
|
| 307 |
+
file_path = os.path.join(DATA_DIR, file)
|
| 308 |
+
try:
|
| 309 |
+
if os.path.isfile(file_path):
|
| 310 |
+
os.unlink(file_path)
|
| 311 |
+
except Exception as e:
|
| 312 |
+
st.error(f"Error deleting file {file_path}: {e}")
|
| 313 |
st.session_state.all_results = {}
|
| 314 |
st.session_state.last_evaluated_dataset = None
|
| 315 |
st.success("Results have been reset.")
|
|
|
|
| 324 |
help="Choose the dataset to evaluate on"
|
| 325 |
)
|
| 326 |
with col2:
|
| 327 |
+
selected_models = st.multiselect(
|
| 328 |
"Select Model(s)",
|
| 329 |
options=list(MODELS.keys()),
|
| 330 |
default=[list(MODELS.keys())[0]],
|
| 331 |
help="Choose one or more models to evaluate."
|
| 332 |
)
|
| 333 |
|
| 334 |
+
models_to_evaluate = selected_models
|
| 335 |
+
|
| 336 |
|
| 337 |
default_prompt = '''You are a medical AI assistant. Please answer the following multiple choice question.
|
| 338 |
Question: {question}
|
|
|
|
| 357 |
- Only the "answer" field will be used for evaluation
|
| 358 |
- Ensure your response is in valid JSON format'''
|
| 359 |
|
| 360 |
+
|
| 361 |
col1, col2 = st.columns([2, 1])
|
| 362 |
with col1:
|
| 363 |
prompt_template = st.text_area(
|
| 364 |
"Customize Prompt Template",
|
| 365 |
default_prompt,
|
| 366 |
height=400,
|
| 367 |
+
help="Edit the prompt template before starting the evaluation."
|
| 368 |
)
|
| 369 |
|
| 370 |
with col2:
|
|
|
|
| 374 |
- `{options}`: The multiple choice options
|
| 375 |
""")
|
| 376 |
|
| 377 |
+
|
| 378 |
with st.spinner("Loading dataset..."):
|
| 379 |
questions = load_dataset_by_name(selected_dataset)
|
| 380 |
+
|
| 381 |
+
|
| 382 |
subjects = sorted(list(set(q['subject_name'] for q in questions)))
|
| 383 |
selected_subject = st.selectbox("Filter by subject", ["All"] + subjects)
|
| 384 |
|
| 385 |
if selected_subject != "All":
|
| 386 |
questions = [q for q in questions if q['subject_name'] == selected_subject]
|
| 387 |
|
| 388 |
+
|
| 389 |
+
num_questions = st.number_input("Number of questions to evaluate", min_value=1, max_value=len(questions), value=1, step=1)
|
| 390 |
+
|
| 391 |
|
| 392 |
if st.button("Start Evaluation"):
|
| 393 |
with st.spinner("Starting evaluation..."):
|
| 394 |
selected_questions = questions[:num_questions]
|
| 395 |
|
| 396 |
+
|
| 397 |
clients = {
|
| 398 |
"togetherai": st.session_state["togetherai_client"],
|
| 399 |
"openai": st.session_state["openai_client"],
|
| 400 |
"anthropic": st.session_state["anthropic_client"]
|
| 401 |
}
|
| 402 |
|
| 403 |
+
|
| 404 |
+
last_evaluated_dataset = st.session_state.last_evaluated_dataset if st.session_state.last_evaluated_dataset else selected_dataset
|
| 405 |
|
| 406 |
progress_container = st.container()
|
| 407 |
progress_bar = progress_container.progress(0)
|
|
|
|
| 442 |
if st.session_state.all_results:
|
| 443 |
st.subheader("Evaluation Results")
|
| 444 |
|
|
|
|
| 445 |
for model_name, results in st.session_state.all_results.items():
|
| 446 |
df = pd.DataFrame(results)
|
| 447 |
metrics = {
|
|
|
|
| 452 |
metrics_df = pd.DataFrame(model_metrics).T
|
| 453 |
|
| 454 |
st.subheader("Model Performance Comparison")
|
|
|
|
| 455 |
accuracy_chart = alt.Chart(
|
| 456 |
metrics_df.reset_index().melt(id_vars=['index'], value_vars=['Accuracy'])
|
| 457 |
).mark_bar().encode(
|
|
|
|
| 470 |
)
|
| 471 |
|
| 472 |
st.altair_chart(accuracy_chart, use_container_width=True)
|
|
|
|
| 473 |
if st.session_state.all_results:
|
| 474 |
st.subheader("Detailed Results")
|
| 475 |
|
|
|
|
| 514 |
|
| 515 |
col1, col2 = st.columns(2)
|
| 516 |
with col1:
|
| 517 |
+
st.write("**Model Response:**")
|
| 518 |
+
st.code(result.get('model_response', "N/A"))
|
| 519 |
with col2:
|
| 520 |
+
st.write("**Explanation:**")
|
| 521 |
+
st.code(result.get('explanation', "N/A"))
|
| 522 |
|
| 523 |
col1, col2 = st.columns(2)
|
| 524 |
with col1:
|
|
|
|
| 530 |
else:
|
| 531 |
st.error("Incorrect")
|
| 532 |
|
| 533 |
+
st.write("**Timestamp:**", result['timestamp'])
|
| 534 |
else:
|
| 535 |
st.info(f"No results available for {selected_model_details} on {selected_dataset_details}. Please run the evaluation first.")
|
| 536 |
|
| 537 |
st.markdown("---")
|
| 538 |
+
st.subheader("Download Results")
|
| 539 |
all_data = []
|
|
|
|
| 540 |
for model_name, results in st.session_state.all_results.items():
|
| 541 |
+
for result in results:
|
| 542 |
+
row = result.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 543 |
all_data.append(row)
|
| 544 |
|
| 545 |
complete_df = pd.DataFrame(all_data)
|
|
|
|
| 546 |
csv = complete_df.to_csv(index=False)
|
|
|
|
| 547 |
st.download_button(
|
| 548 |
label="Download All Results as CSV",
|
| 549 |
data=csv,
|