Spaces:
Runtime error
Runtime error
| from datasets import load_dataset | |
| from transformers import AutoTokenizer | |
| from modeling.audiobart import AudioBartForConditionalGeneration | |
| from data.collator import EncodecCollator | |
| from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments | |
| import numpy as np | |
| import torch | |
| import os | |
| os.environ["CUDA_VISIBLE_DEVICES"] = "4,5,6,7" | |
| if __name__=="__main__": | |
| model = AudioBartForConditionalGeneration.from_pretrained('bart/model') | |
| basepath = "/data/jyk/aac_dataset/clotho/encodec/" | |
| tokenizer = AutoTokenizer.from_pretrained('facebook/bart-large') | |
| data_files = {"train": "csv/train_short.csv", "validation": "csv/valid_short.csv"} | |
| raw_dataset = load_dataset("csv", data_files=data_files) | |
| def preprocessing(example): | |
| path = example['file_path'] | |
| encodec = np.load(os.path.join(basepath, path)) | |
| if encodec.shape[0]>1022: | |
| encodec = encodec[:1022, :] | |
| attention_mask = np.ones(encodec.shape[0]+2) | |
| target_text = tokenizer(text_target=example['caption']) | |
| return {'input_ids': encodec , 'attention_mask': attention_mask, 'labels': target_text['input_ids'], 'decoder_attention_mask': target_text['attention_mask']} | |
| train_dataset = raw_dataset['validation'].map(preprocessing) | |
| train_dataset.set_format("pt", columns=['input_ids', 'attention_mask', 'labels', 'decoder_attention_mask']) | |
| data_collator = EncodecCollator(tokenizer=tokenizer, model=model, return_tensors="pt") | |
| training_args = Seq2SeqTrainingArguments('summary_test', per_gpu_train_batch_size=20) | |
| trainer = Seq2SeqTrainer( | |
| model, training_args, train_dataset=train_dataset, eval_dataset=train_dataset, data_collator=data_collator, tokenizer=tokenizer | |
| ) | |
| trainer.train() |