Spaces:
Running
Running
Dan Flower
commited on
Commit
Β·
8667228
1
Parent(s):
d42f795
deploy: sync model/utils into TemplateA and update Dockerfile (canonical COPY + cache-bust)
Browse files- model/download_model.py +0 -28
- model/model_runner.py +103 -0
- utils/.gitignore +0 -3
- utils/config.py +0 -20
- utils/flags.py +3 -6
- utils/logger.py +0 -17
- utils/sanitize.py +0 -26
model/download_model.py
DELETED
|
@@ -1,28 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
from huggingface_hub import hf_hub_download
|
| 3 |
-
|
| 4 |
-
# Use the token directly, skip login()
|
| 5 |
-
token = os.environ.get("HF_TOKEN")
|
| 6 |
-
|
| 7 |
-
if not token:
|
| 8 |
-
raise RuntimeError("HF_TOKEN environment variable is missing")
|
| 9 |
-
|
| 10 |
-
print("Downloading model with token:", token[:8] + "β¦")
|
| 11 |
-
|
| 12 |
-
model_path = hf_hub_download(
|
| 13 |
-
repo_id="TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
|
| 14 |
-
filename="tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf",
|
| 15 |
-
repo_type="model",
|
| 16 |
-
local_dir="/tmp/models",
|
| 17 |
-
token=token,
|
| 18 |
-
)
|
| 19 |
-
|
| 20 |
-
print("β
Model downloaded to:", model_path)
|
| 21 |
-
|
| 22 |
-
if os.path.exists(model_path):
|
| 23 |
-
print("π File exists at", model_path)
|
| 24 |
-
else:
|
| 25 |
-
print("β File not found after download!")
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
#https://huggingface.co/TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF/blob/main/tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model/model_runner.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# model_runner.py
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
from typing import List, Optional
|
| 5 |
+
from llama_cpp import Llama
|
| 6 |
+
|
| 7 |
+
print(f"[BOOT] model_runner from {__file__}", file=sys.stderr)
|
| 8 |
+
|
| 9 |
+
# ---- Phase 2: flags (no behavior change) ------------------------------------
|
| 10 |
+
# Reads LAB_* env toggles; all defaults preserve current behavior.
|
| 11 |
+
try:
|
| 12 |
+
from utils import flags # if your package path is different, adjust import
|
| 13 |
+
except Exception:
|
| 14 |
+
# Fallback inline flags if utils.flags isn't available in this lab
|
| 15 |
+
def _as_bool(val: Optional[str], default: bool) -> bool:
|
| 16 |
+
if val is None:
|
| 17 |
+
return default
|
| 18 |
+
return val.strip().lower() in {"1", "true", "yes", "on", "y", "t"}
|
| 19 |
+
class _F:
|
| 20 |
+
SANITIZE_ENABLED = _as_bool(os.getenv("LAB_SANITIZE_ENABLED"), False) # you don't sanitize today
|
| 21 |
+
STOPSEQ_ENABLED = _as_bool(os.getenv("LAB_STOPSEQ_ENABLED"), False) # extra stops only; defaults off
|
| 22 |
+
CRITIC_ENABLED = _as_bool(os.getenv("LAB_CRITIC_ENABLED"), False)
|
| 23 |
+
JSON_MODE = _as_bool(os.getenv("LAB_JSON_MODE"), False)
|
| 24 |
+
EVIDENCE_GATE = _as_bool(os.getenv("LAB_EVIDENCE_GATE"), False)
|
| 25 |
+
@staticmethod
|
| 26 |
+
def snapshot():
|
| 27 |
+
return {
|
| 28 |
+
"LAB_SANITIZE_ENABLED": _F.SANITIZE_ENABLED,
|
| 29 |
+
"LAB_STOPSEQ_ENABLED": _F.STOPSEQ_ENABLED,
|
| 30 |
+
"LAB_CRITIC_ENABLED": _F.CRITIC_ENABLED,
|
| 31 |
+
"LAB_JSON_MODE": _F.JSON_MODE,
|
| 32 |
+
"LAB_EVIDENCE_GATE": _F.EVIDENCE_GATE,
|
| 33 |
+
}
|
| 34 |
+
flags = _F()
|
| 35 |
+
|
| 36 |
+
print("[flags] snapshot:", getattr(flags, "snapshot", lambda: {} )(), file=sys.stderr)
|
| 37 |
+
|
| 38 |
+
# Optional sanitizer hook (kept no-op unless enabled later)
|
| 39 |
+
def _sanitize(text: str) -> str:
|
| 40 |
+
# Phase 2: default False -> no behavior change
|
| 41 |
+
if getattr(flags, "SANITIZE_ENABLED", False):
|
| 42 |
+
# TODO: wire your real sanitizer in Phase 3+
|
| 43 |
+
return text.strip()
|
| 44 |
+
return text
|
| 45 |
+
|
| 46 |
+
# Stop sequences: keep today's defaults ALWAYS.
|
| 47 |
+
# If LAB_STOPSEQ_ENABLED=true, add *extra* stops from STOP_SEQUENCES env (comma-separated).
|
| 48 |
+
DEFAULT_STOPS: List[str] = ["\nUser:", "\nAssistant:"]
|
| 49 |
+
|
| 50 |
+
def _extra_stops_from_env() -> List[str]:
|
| 51 |
+
if not getattr(flags, "STOPSEQ_ENABLED", False):
|
| 52 |
+
return []
|
| 53 |
+
raw = os.getenv("STOP_SEQUENCES", "")
|
| 54 |
+
toks = [t.strip() for t in raw.split(",") if t.strip()]
|
| 55 |
+
return toks
|
| 56 |
+
|
| 57 |
+
# ---- Model cache / load ------------------------------------------------------
|
| 58 |
+
_model = None # module-level cache
|
| 59 |
+
|
| 60 |
+
def load_model():
|
| 61 |
+
global _model
|
| 62 |
+
if _model is not None:
|
| 63 |
+
return _model
|
| 64 |
+
|
| 65 |
+
model_path = os.getenv("MODEL_PATH")
|
| 66 |
+
if not model_path or not os.path.exists(model_path):
|
| 67 |
+
raise ValueError(f"Model path does not exist or is not set: {model_path}")
|
| 68 |
+
|
| 69 |
+
print(f"[INFO] Loading model from {model_path}")
|
| 70 |
+
|
| 71 |
+
_model = Llama(
|
| 72 |
+
model_path=model_path,
|
| 73 |
+
n_ctx=1024, # short context to reduce memory use
|
| 74 |
+
n_threads=4, # number of CPU threads
|
| 75 |
+
n_gpu_layers=0 # CPU only (Hugging Face free tier)
|
| 76 |
+
)
|
| 77 |
+
return _model
|
| 78 |
+
|
| 79 |
+
# ---- Inference ---------------------------------------------------------------
|
| 80 |
+
def generate(prompt: str, max_tokens: int = 256) -> str:
|
| 81 |
+
model = load_model()
|
| 82 |
+
|
| 83 |
+
# Preserve existing default stops; optionally extend with extra ones if flag is on
|
| 84 |
+
stops = DEFAULT_STOPS + _extra_stops_from_env()
|
| 85 |
+
|
| 86 |
+
output = model(
|
| 87 |
+
prompt,
|
| 88 |
+
max_tokens=max_tokens,
|
| 89 |
+
stop=stops, # unchanged defaults; may include extra stops if enabled
|
| 90 |
+
echo=False,
|
| 91 |
+
temperature=0.7,
|
| 92 |
+
top_p=0.95,
|
| 93 |
+
)
|
| 94 |
+
raw_text = output["choices"][0]["text"]
|
| 95 |
+
|
| 96 |
+
# Preserve current manual truncation by the same default stops (kept intentionally)
|
| 97 |
+
# Extra stops are also applied here if enabled for consistency.
|
| 98 |
+
for stop_token in stops:
|
| 99 |
+
if stop_token and stop_token in raw_text:
|
| 100 |
+
raw_text = raw_text.split(stop_token)[0]
|
| 101 |
+
|
| 102 |
+
final = _sanitize(raw_text)
|
| 103 |
+
return final.strip()
|
utils/.gitignore
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
# .gitignore
|
| 2 |
-
logs/
|
| 3 |
-
labsold/
|
|
|
|
|
|
|
|
|
|
|
|
utils/config.py
DELETED
|
@@ -1,20 +0,0 @@
|
|
| 1 |
-
### utils/config.py
|
| 2 |
-
# utils/config.py
|
| 3 |
-
|
| 4 |
-
LAB_SANITIZE_ENABLED=true
|
| 5 |
-
|
| 6 |
-
LAB_STOPSEQ_ENABLED=false
|
| 7 |
-
|
| 8 |
-
LAB_CRITIC_ENABLED=false
|
| 9 |
-
|
| 10 |
-
LAB_JSON_MODE=false
|
| 11 |
-
|
| 12 |
-
LAB_EVIDENCE_GATE=false
|
| 13 |
-
|
| 14 |
-
SYSTEM_PROMPT = """You are a helpful AI assistant.
|
| 15 |
-
|
| 16 |
-
Answer the user clearly and concisely.
|
| 17 |
-
|
| 18 |
-
Each response should consist of only one reply. Do not simulate multiple turns. Never generate 'User:' or 'Assistant:' unless instructed.
|
| 19 |
-
|
| 20 |
-
Only respond to the current question. Do not simulate full conversations. Do not invent user inputs. Stay in character as a single-turn assistant."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/flags.py
CHANGED
|
@@ -1,21 +1,19 @@
|
|
| 1 |
-
# utils/flags.py
|
| 2 |
import os
|
| 3 |
from typing import Optional, Dict
|
| 4 |
|
| 5 |
-
# Optional: load .env
|
| 6 |
try:
|
| 7 |
from dotenv import load_dotenv # type: ignore
|
| 8 |
load_dotenv()
|
| 9 |
except Exception:
|
| 10 |
-
pass
|
| 11 |
|
| 12 |
def _as_bool(val: Optional[str], default: bool) -> bool:
|
| 13 |
if val is None:
|
| 14 |
return default
|
| 15 |
return val.strip().lower() in {"1", "true", "yes", "on", "y", "t"}
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
# Set SANITIZE_ENABLED default to False to avoid any behavior change unless enabled via env
|
| 19 |
SANITIZE_ENABLED = _as_bool(os.getenv("LAB_SANITIZE_ENABLED"), False)
|
| 20 |
STOPSEQ_ENABLED = _as_bool(os.getenv("LAB_STOPSEQ_ENABLED"), False)
|
| 21 |
CRITIC_ENABLED = _as_bool(os.getenv("LAB_CRITIC_ENABLED"), False)
|
|
@@ -23,7 +21,6 @@ JSON_MODE = _as_bool(os.getenv("LAB_JSON_MODE"), False)
|
|
| 23 |
EVIDENCE_GATE = _as_bool(os.getenv("LAB_EVIDENCE_GATE"), False)
|
| 24 |
|
| 25 |
def snapshot() -> Dict[str, bool]:
|
| 26 |
-
"""Convenience for logging/diagnostics."""
|
| 27 |
return {
|
| 28 |
"LAB_SANITIZE_ENABLED": SANITIZE_ENABLED,
|
| 29 |
"LAB_STOPSEQ_ENABLED": STOPSEQ_ENABLED,
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
from typing import Optional, Dict
|
| 3 |
|
| 4 |
+
# Optional: load .env for local dev; harmless on HF Spaces
|
| 5 |
try:
|
| 6 |
from dotenv import load_dotenv # type: ignore
|
| 7 |
load_dotenv()
|
| 8 |
except Exception:
|
| 9 |
+
pass
|
| 10 |
|
| 11 |
def _as_bool(val: Optional[str], default: bool) -> bool:
|
| 12 |
if val is None:
|
| 13 |
return default
|
| 14 |
return val.strip().lower() in {"1", "true", "yes", "on", "y", "t"}
|
| 15 |
|
| 16 |
+
# Defaults preserve current behaviour (all off unless env enabled)
|
|
|
|
| 17 |
SANITIZE_ENABLED = _as_bool(os.getenv("LAB_SANITIZE_ENABLED"), False)
|
| 18 |
STOPSEQ_ENABLED = _as_bool(os.getenv("LAB_STOPSEQ_ENABLED"), False)
|
| 19 |
CRITIC_ENABLED = _as_bool(os.getenv("LAB_CRITIC_ENABLED"), False)
|
|
|
|
| 21 |
EVIDENCE_GATE = _as_bool(os.getenv("LAB_EVIDENCE_GATE"), False)
|
| 22 |
|
| 23 |
def snapshot() -> Dict[str, bool]:
|
|
|
|
| 24 |
return {
|
| 25 |
"LAB_SANITIZE_ENABLED": SANITIZE_ENABLED,
|
| 26 |
"LAB_STOPSEQ_ENABLED": STOPSEQ_ENABLED,
|
utils/logger.py
DELETED
|
@@ -1,17 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
from datetime import datetime
|
| 3 |
-
|
| 4 |
-
def log_interaction(lab_name, user_input, model_output, result):
|
| 5 |
-
log_dir = "/tmp/logs" # β
Use writable temp location
|
| 6 |
-
os.makedirs(log_dir, exist_ok=True)
|
| 7 |
-
|
| 8 |
-
log_path = os.path.join(log_dir, "interaction_log.txt")
|
| 9 |
-
|
| 10 |
-
with open(log_path, "a") as f:
|
| 11 |
-
f.write(
|
| 12 |
-
f"{datetime.utcnow().isoformat()} | "
|
| 13 |
-
f"Lab: {lab_name} | "
|
| 14 |
-
f"Input: {user_input} | "
|
| 15 |
-
f"Output: {model_output} | "
|
| 16 |
-
f"Result: {result}\n"
|
| 17 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/sanitize.py
DELETED
|
@@ -1,26 +0,0 @@
|
|
| 1 |
-
# utils/sanitize.py
|
| 2 |
-
import os
|
| 3 |
-
import re
|
| 4 |
-
from typing import Iterable
|
| 5 |
-
|
| 6 |
-
DEFAULT_MARKERS = ("user:", "assistant:", "system:", "human:")
|
| 7 |
-
|
| 8 |
-
def _markers_from_env() -> Iterable[str]:
|
| 9 |
-
raw = os.getenv("LAB_SANITIZE_MARKERS")
|
| 10 |
-
if not raw:
|
| 11 |
-
return DEFAULT_MARKERS
|
| 12 |
-
# comma/semicolon/space separated
|
| 13 |
-
parts = re.split(r"[,\s;]+", raw.strip())
|
| 14 |
-
return tuple([p for p in parts if p])
|
| 15 |
-
|
| 16 |
-
def sanitize_output(response: str) -> str:
|
| 17 |
-
"""
|
| 18 |
-
Remove hallucinated dialogue markers (e.g., 'user:', 'assistant:') and all text that follows.
|
| 19 |
-
Markers are case-insensitive. Configurable via LAB_SANITIZE_MARKERS.
|
| 20 |
-
"""
|
| 21 |
-
if not response:
|
| 22 |
-
return response
|
| 23 |
-
markers = _markers_from_env()
|
| 24 |
-
# Build a single regex from the configured markers, escaped for safety
|
| 25 |
-
pattern = r"(" + r"|".join(re.escape(m) for m in markers) + r")"
|
| 26 |
-
return re.split(pattern, response, flags=re.IGNORECASE)[0].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|