Spaces:
Running
Running
Update Space (evaluate main: 828c6327)
Browse files- README.md +110 -5
- app.py +6 -0
- exact_match.py +137 -0
- requirements.txt +3 -0
README.md
CHANGED
|
@@ -1,12 +1,117 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.0.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Exact Match
|
| 3 |
+
emoji: 🤗
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.0.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
tags:
|
| 11 |
+
- evaluate
|
| 12 |
+
- metric
|
| 13 |
---
|
| 14 |
|
| 15 |
+
# Metric Card for Exact Match
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
## Metric Description
|
| 19 |
+
A given predicted string's exact match score is 1 if it is the exact same as its reference string, and is 0 otherwise.
|
| 20 |
+
|
| 21 |
+
- **Example 1**: The exact match score of prediction "Happy Birthday!" is 0, given its reference is "Happy New Year!".
|
| 22 |
+
- **Example 2**: The exact match score of prediction "The Colour of Magic (1983)" is 1, given its reference is also "The Colour of Magic (1983)".
|
| 23 |
+
|
| 24 |
+
The exact match score of a set of predictions is the sum of all of the individual exact match scores in the set, divided by the total number of predictions in the set.
|
| 25 |
+
|
| 26 |
+
- **Example**: The exact match score of the set {Example 1, Example 2} (above) is 0.5.
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
## How to Use
|
| 30 |
+
At minimum, this metric takes as input predictions and references:
|
| 31 |
+
```python
|
| 32 |
+
>>> from datasets import load
|
| 33 |
+
>>> exact_match_metric = load("exact_match")
|
| 34 |
+
>>> results = exact_match_metric.compute(predictions=predictions, references=references)
|
| 35 |
+
```
|
| 36 |
+
|
| 37 |
+
### Inputs
|
| 38 |
+
- **`predictions`** (`list` of `str`): List of predicted texts.
|
| 39 |
+
- **`references`** (`list` of `str`): List of reference texts.
|
| 40 |
+
- **`regexes_to_ignore`** (`list` of `str`): Regex expressions of characters to ignore when calculating the exact matches. Defaults to `None`. Note: the regex changes are applied before capitalization is normalized.
|
| 41 |
+
- **`ignore_case`** (`bool`): If `True`, turns everything to lowercase so that capitalization differences are ignored. Defaults to `False`.
|
| 42 |
+
- **`ignore_punctuation`** (`bool`): If `True`, removes punctuation before comparing strings. Defaults to `False`.
|
| 43 |
+
- **`ignore_numbers`** (`bool`): If `True`, removes all digits before comparing strings. Defaults to `False`.
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
### Output Values
|
| 47 |
+
This metric outputs a dictionary with one value: the average exact match score.
|
| 48 |
+
|
| 49 |
+
```python
|
| 50 |
+
{'exact_match': 100.0}
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
This metric's range is 0-100, inclusive. Here, 0.0 means no prediction/reference pairs were matches, while 100.0 means they all were.
|
| 54 |
+
|
| 55 |
+
#### Values from Popular Papers
|
| 56 |
+
The exact match metric is often included in other metrics, such as SQuAD. For example, the [original SQuAD paper](https://nlp.stanford.edu/pubs/rajpurkar2016squad.pdf) reported an Exact Match score of 40.0%. They also report that the human performance Exact Match score on the dataset was 80.3%.
|
| 57 |
+
|
| 58 |
+
### Examples
|
| 59 |
+
Without including any regexes to ignore:
|
| 60 |
+
```python
|
| 61 |
+
>>> exact_match = evaluate.load("exact_match")
|
| 62 |
+
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
|
| 63 |
+
>>> preds = ["cat?", "theater", "yelling", "agent"]
|
| 64 |
+
>>> results = exact_match.compute(references=refs, predictions=preds)
|
| 65 |
+
>>> print(round(results["exact_match"], 1))
|
| 66 |
+
25.0
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
Ignoring regexes "the" and "yell", as well as ignoring case and punctuation:
|
| 70 |
+
```python
|
| 71 |
+
>>> exact_match = evaluate.load("exact_match")
|
| 72 |
+
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
|
| 73 |
+
>>> preds = ["cat?", "theater", "yelling", "agent"]
|
| 74 |
+
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)
|
| 75 |
+
>>> print(round(results["exact_match"], 1))
|
| 76 |
+
50.0
|
| 77 |
+
```
|
| 78 |
+
Note that in the example above, because the regexes are ignored before the case is normalized, "yell" from "YELLING" is not deleted.
|
| 79 |
+
|
| 80 |
+
Ignoring "the", "yell", and "YELL", as well as ignoring case and punctuation:
|
| 81 |
+
```python
|
| 82 |
+
>>> exact_match = evaluate.load("exact_match")
|
| 83 |
+
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
|
| 84 |
+
>>> preds = ["cat?", "theater", "yelling", "agent"]
|
| 85 |
+
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)
|
| 86 |
+
>>> print(round(results["exact_match"], 1))
|
| 87 |
+
75.0
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
Ignoring "the", "yell", and "YELL", as well as ignoring case, punctuation, and numbers:
|
| 91 |
+
```python
|
| 92 |
+
>>> exact_match = evaluate.load("exact_match")
|
| 93 |
+
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
|
| 94 |
+
>>> preds = ["cat?", "theater", "yelling", "agent"]
|
| 95 |
+
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)
|
| 96 |
+
>>> print(round(results["exact_match"], 1))
|
| 97 |
+
100.0
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
An example that includes sentences:
|
| 101 |
+
```python
|
| 102 |
+
>>> exact_match = evaluate.load("exact_match")
|
| 103 |
+
>>> refs = ["The cat sat on the mat.", "Theaters are great.", "It's like comparing oranges and apples."]
|
| 104 |
+
>>> preds = ["The cat sat on the mat?", "Theaters are great.", "It's like comparing apples and oranges."]
|
| 105 |
+
>>> results = exact_match.compute(references=refs, predictions=preds)
|
| 106 |
+
>>> print(round(results["exact_match"], 1))
|
| 107 |
+
33.3
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
## Limitations and Bias
|
| 112 |
+
This metric is limited in that it outputs the same score for something that is completely wrong as for something that is correct except for a single character. In other words, there is no award for being *almost* right.
|
| 113 |
+
|
| 114 |
+
## Citation
|
| 115 |
+
|
| 116 |
+
## Further References
|
| 117 |
+
- Also used in the [SQuAD metric](https://github.com/huggingface/datasets/tree/master/metrics/squad)
|
app.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import evaluate
|
| 2 |
+
from evaluate.utils import launch_gradio_widget
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
module = evaluate.load("exact_match")
|
| 6 |
+
launch_gradio_widget(module)
|
exact_match.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
"""Exact Match metric."""
|
| 15 |
+
import re
|
| 16 |
+
import string
|
| 17 |
+
|
| 18 |
+
import datasets
|
| 19 |
+
import numpy as np
|
| 20 |
+
|
| 21 |
+
import evaluate
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
_DESCRIPTION = """
|
| 25 |
+
Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
_KWARGS_DESCRIPTION = """
|
| 29 |
+
Args:
|
| 30 |
+
predictions: List of predicted texts.
|
| 31 |
+
references: List of reference texts.
|
| 32 |
+
regexes_to_ignore: List, defaults to None. Regex expressions of characters to
|
| 33 |
+
ignore when calculating the exact matches. Note: these regexes are removed
|
| 34 |
+
from the input data before the changes based on the options below (e.g. ignore_case,
|
| 35 |
+
ignore_punctuation, ignore_numbers) are applied.
|
| 36 |
+
ignore_case: Boolean, defaults to False. If true, turns everything
|
| 37 |
+
to lowercase so that capitalization differences are ignored.
|
| 38 |
+
ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before
|
| 39 |
+
comparing predictions and references.
|
| 40 |
+
ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before
|
| 41 |
+
comparing predictions and references.
|
| 42 |
+
Returns:
|
| 43 |
+
exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.
|
| 44 |
+
Examples:
|
| 45 |
+
>>> exact_match = evaluate.load("exact_match")
|
| 46 |
+
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
|
| 47 |
+
>>> preds = ["cat?", "theater", "yelling", "agent"]
|
| 48 |
+
>>> results = exact_match.compute(references=refs, predictions=preds)
|
| 49 |
+
>>> print(round(results["exact_match"], 1))
|
| 50 |
+
25.0
|
| 51 |
+
|
| 52 |
+
>>> exact_match = evaluate.load("exact_match")
|
| 53 |
+
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
|
| 54 |
+
>>> preds = ["cat?", "theater", "yelling", "agent"]
|
| 55 |
+
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)
|
| 56 |
+
>>> print(round(results["exact_match"], 1))
|
| 57 |
+
50.0
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
>>> exact_match = evaluate.load("exact_match")
|
| 61 |
+
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
|
| 62 |
+
>>> preds = ["cat?", "theater", "yelling", "agent"]
|
| 63 |
+
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)
|
| 64 |
+
>>> print(round(results["exact_match"], 1))
|
| 65 |
+
75.0
|
| 66 |
+
|
| 67 |
+
>>> exact_match = evaluate.load("exact_match")
|
| 68 |
+
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
|
| 69 |
+
>>> preds = ["cat?", "theater", "yelling", "agent"]
|
| 70 |
+
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)
|
| 71 |
+
>>> print(round(results["exact_match"], 1))
|
| 72 |
+
100.0
|
| 73 |
+
|
| 74 |
+
>>> exact_match = evaluate.load("exact_match")
|
| 75 |
+
>>> refs = ["The cat sat on the mat.", "Theaters are great.", "It's like comparing oranges and apples."]
|
| 76 |
+
>>> preds = ["The cat sat on the mat?", "Theaters are great.", "It's like comparing apples and oranges."]
|
| 77 |
+
>>> results = exact_match.compute(references=refs, predictions=preds)
|
| 78 |
+
>>> print(round(results["exact_match"], 1))
|
| 79 |
+
33.3
|
| 80 |
+
|
| 81 |
+
"""
|
| 82 |
+
|
| 83 |
+
_CITATION = """
|
| 84 |
+
"""
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 88 |
+
class ExactMatch(evaluate.EvaluationModule):
|
| 89 |
+
def _info(self):
|
| 90 |
+
return evaluate.EvaluationModuleInfo(
|
| 91 |
+
description=_DESCRIPTION,
|
| 92 |
+
citation=_CITATION,
|
| 93 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
| 94 |
+
features=datasets.Features(
|
| 95 |
+
{
|
| 96 |
+
"predictions": datasets.Value("string", id="sequence"),
|
| 97 |
+
"references": datasets.Value("string", id="sequence"),
|
| 98 |
+
}
|
| 99 |
+
),
|
| 100 |
+
reference_urls=[],
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
def _compute(
|
| 104 |
+
self,
|
| 105 |
+
predictions,
|
| 106 |
+
references,
|
| 107 |
+
regexes_to_ignore=None,
|
| 108 |
+
ignore_case=False,
|
| 109 |
+
ignore_punctuation=False,
|
| 110 |
+
ignore_numbers=False,
|
| 111 |
+
):
|
| 112 |
+
|
| 113 |
+
if regexes_to_ignore is not None:
|
| 114 |
+
for s in regexes_to_ignore:
|
| 115 |
+
predictions = np.array([re.sub(s, "", x) for x in predictions])
|
| 116 |
+
references = np.array([re.sub(s, "", x) for x in references])
|
| 117 |
+
else:
|
| 118 |
+
predictions = np.asarray(predictions)
|
| 119 |
+
references = np.asarray(references)
|
| 120 |
+
|
| 121 |
+
if ignore_case:
|
| 122 |
+
predictions = np.char.lower(predictions)
|
| 123 |
+
references = np.char.lower(references)
|
| 124 |
+
|
| 125 |
+
if ignore_punctuation:
|
| 126 |
+
repl_table = string.punctuation.maketrans("", "", string.punctuation)
|
| 127 |
+
predictions = np.char.translate(predictions, table=repl_table)
|
| 128 |
+
references = np.char.translate(references, table=repl_table)
|
| 129 |
+
|
| 130 |
+
if ignore_numbers:
|
| 131 |
+
repl_table = string.digits.maketrans("", "", string.digits)
|
| 132 |
+
predictions = np.char.translate(predictions, table=repl_table)
|
| 133 |
+
references = np.char.translate(references, table=repl_table)
|
| 134 |
+
|
| 135 |
+
score_list = predictions == references
|
| 136 |
+
|
| 137 |
+
return {"exact_match": np.mean(score_list) * 100}
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# TODO: fix github to release
|
| 2 |
+
git+https://github.com/huggingface/evaluate.git@b6e6ed7f3e6844b297bff1b43a1b4be0709b9671
|
| 3 |
+
datasets~=2.0
|