Spaces:
Runtime error
Runtime error
Allow large pictures
Browse files
app.py
CHANGED
|
@@ -9,7 +9,7 @@ device = "cuda"
|
|
| 9 |
|
| 10 |
base = StableDiffusionXLDiffImg2ImgPipeline.from_pretrained(
|
| 11 |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
| 12 |
-
)
|
| 13 |
|
| 14 |
refiner = StableDiffusionXLDiffImg2ImgPipeline.from_pretrained(
|
| 15 |
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
|
@@ -18,7 +18,7 @@ refiner = StableDiffusionXLDiffImg2ImgPipeline.from_pretrained(
|
|
| 18 |
torch_dtype=torch.float16,
|
| 19 |
use_safetensors=True,
|
| 20 |
variant="fp16",
|
| 21 |
-
)
|
| 22 |
|
| 23 |
base.scheduler = DPMSolverMultistepScheduler.from_config(base.scheduler.config)
|
| 24 |
refiner.scheduler = DPMSolverMultistepScheduler.from_config(base.scheduler.config)
|
|
@@ -46,17 +46,20 @@ def inference(image, map, gs, prompt, negative_prompt):
|
|
| 46 |
validate_inputs(image, map)
|
| 47 |
image = preprocess_image(image)
|
| 48 |
map = preprocess_map(map)
|
| 49 |
-
|
|
|
|
| 50 |
num_images_per_prompt=1,
|
| 51 |
negative_prompt=negative_prompt,
|
| 52 |
map=map,
|
| 53 |
num_inference_steps=NUM_INFERENCE_STEPS, denoising_end=0.8, output_type="latent").images
|
| 54 |
-
|
| 55 |
-
|
|
|
|
| 56 |
num_images_per_prompt=1,
|
| 57 |
negative_prompt=negative_prompt,
|
| 58 |
map=map,
|
| 59 |
num_inference_steps=NUM_INFERENCE_STEPS, denoising_start=0.8).images[0]
|
|
|
|
| 60 |
return edited_images
|
| 61 |
|
| 62 |
|
|
|
|
| 9 |
|
| 10 |
base = StableDiffusionXLDiffImg2ImgPipeline.from_pretrained(
|
| 11 |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
| 12 |
+
)
|
| 13 |
|
| 14 |
refiner = StableDiffusionXLDiffImg2ImgPipeline.from_pretrained(
|
| 15 |
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
|
|
|
| 18 |
torch_dtype=torch.float16,
|
| 19 |
use_safetensors=True,
|
| 20 |
variant="fp16",
|
| 21 |
+
)
|
| 22 |
|
| 23 |
base.scheduler = DPMSolverMultistepScheduler.from_config(base.scheduler.config)
|
| 24 |
refiner.scheduler = DPMSolverMultistepScheduler.from_config(base.scheduler.config)
|
|
|
|
| 46 |
validate_inputs(image, map)
|
| 47 |
image = preprocess_image(image)
|
| 48 |
map = preprocess_map(map)
|
| 49 |
+
base_cuda = base.to(device)
|
| 50 |
+
edited_images = base_cuda(prompt=prompt, original_image=image, image=image, strength=1, guidance_scale=gs,
|
| 51 |
num_images_per_prompt=1,
|
| 52 |
negative_prompt=negative_prompt,
|
| 53 |
map=map,
|
| 54 |
num_inference_steps=NUM_INFERENCE_STEPS, denoising_end=0.8, output_type="latent").images
|
| 55 |
+
base_cuda=None
|
| 56 |
+
refiner_cuda = refiner.to(device)
|
| 57 |
+
edited_images = refiner_cuda(prompt=prompt, original_image=image, image=edited_images, strength=1, guidance_scale=7.5,
|
| 58 |
num_images_per_prompt=1,
|
| 59 |
negative_prompt=negative_prompt,
|
| 60 |
map=map,
|
| 61 |
num_inference_steps=NUM_INFERENCE_STEPS, denoising_start=0.8).images[0]
|
| 62 |
+
refiner_cuda=None
|
| 63 |
return edited_images
|
| 64 |
|
| 65 |
|