Spaces:
Runtime error
Runtime error
| import json | |
| import os | |
| from pathlib import Path | |
| import gradio as gr | |
| import numpy as np | |
| from dotenv import load_dotenv | |
| from fastapi import FastAPI | |
| from fastapi.responses import HTMLResponse, StreamingResponse | |
| from fastrtc import ( | |
| AdditionalOutputs, | |
| ReplyOnPause, | |
| Stream, | |
| audio_to_bytes, | |
| get_cloudflare_turn_credentials_async, | |
| get_current_context, | |
| get_tts_model, | |
| ) | |
| from groq import Groq | |
| from numpy.typing import NDArray | |
| curr_dir = Path(__file__).parent | |
| load_dotenv() | |
| tts_model = get_tts_model() | |
| groq = Groq(api_key=os.getenv("GROQ_API_KEY")) | |
| conversations: dict[str, list[dict[str, str]]] = {} | |
| def response(user_audio: tuple[int, NDArray[np.int16]]): | |
| context = get_current_context() | |
| if context.webrtc_id not in conversations: | |
| conversations[context.webrtc_id] = [ | |
| { | |
| "role": "system", | |
| "content": ( | |
| "You are a helpful assistant that can answer questions and help with tasks." | |
| 'Please return a short (that will be converted to audio using a text-to-speech model) response and long response to this question. They can be the same if appropriate. Please return in JSON format\n\n{"short":, "long"}\n\n' | |
| ), | |
| } | |
| ] | |
| messages = conversations[context.webrtc_id] | |
| transcription = groq.audio.transcriptions.create( | |
| file=("audio.wav", audio_to_bytes(user_audio)), | |
| model="distil-whisper-large-v3-en", | |
| response_format="verbose_json", | |
| ) | |
| print(transcription.text) | |
| messages.append({"role": "user", "content": transcription.text}) | |
| completion = groq.chat.completions.create( # type: ignore | |
| model="meta-llama/llama-4-scout-17b-16e-instruct", | |
| messages=messages, # type: ignore | |
| temperature=1, | |
| max_completion_tokens=1024, | |
| top_p=1, | |
| stream=False, | |
| response_format={"type": "json_object"}, | |
| stop=None, | |
| ) | |
| response = completion.choices[0].message.content | |
| response = json.loads(response) | |
| short_response = response["short"] | |
| long_response = response["long"] | |
| messages.append({"role": "assistant", "content": long_response}) | |
| conversations[context.webrtc_id] = messages | |
| yield from tts_model.stream_tts_sync(short_response) | |
| yield AdditionalOutputs(messages) | |
| stream = Stream( | |
| ReplyOnPause(response), | |
| modality="audio", | |
| mode="send-receive", | |
| additional_outputs=[gr.Chatbot(type="messages")], | |
| additional_outputs_handler=lambda old, new: new, | |
| rtc_configuration=get_cloudflare_turn_credentials_async, | |
| ) | |
| app = FastAPI() | |
| stream.mount(app) | |
| async def _(): | |
| rtc_config = await get_cloudflare_turn_credentials_async() | |
| html_content = (curr_dir / "index.html").read_text() | |
| html_content = html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config)) | |
| return HTMLResponse(content=html_content) | |
| async def _(webrtc_id: str): | |
| async def output_stream(): | |
| async for output in stream.output_stream(webrtc_id): | |
| state = output.args[0] | |
| for msg in state[-2:]: | |
| data = { | |
| "message": msg, | |
| } | |
| yield f"event: output\ndata: {json.dumps(data)}\n\n" | |
| return StreamingResponse(output_stream(), media_type="text/event-stream") | |
| if __name__ == "__main__": | |
| import os | |
| if (mode := os.getenv("MODE")) == "UI": | |
| stream.ui.launch(server_port=7860) | |
| elif mode == "PHONE": | |
| raise ValueError("Phone mode not supported") | |
| else: | |
| import uvicorn | |
| uvicorn.run(app, host="0.0.0.0", port=7860) | |