Spaces:
Running
Running
Commit
Β·
3b88fc9
1
Parent(s):
fae5def
removed generator code
Browse files
networks/__pycache__/generator.cpython-37.pyc
DELETED
|
Binary file (7.03 kB)
|
|
|
networks/__pycache__/generator.cpython-38.pyc
DELETED
|
Binary file (6.54 kB)
|
|
|
networks/generator.py
DELETED
|
@@ -1,321 +0,0 @@
|
|
| 1 |
-
from tensorflow.keras.layers import *
|
| 2 |
-
from tensorflow.keras.models import Model
|
| 3 |
-
from tensorflow_addons.layers import InstanceNormalization
|
| 4 |
-
from networks.layers import AdaIN, AdaptiveAttention
|
| 5 |
-
|
| 6 |
-
import numpy as np
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
def residual_down_block(inputs, filters, resample=True):
|
| 10 |
-
x = inputs
|
| 11 |
-
|
| 12 |
-
r = Conv2D(filters=filters, kernel_size=1, strides=1, padding='same')(x)
|
| 13 |
-
if resample:
|
| 14 |
-
r = AveragePooling2D()(r)
|
| 15 |
-
|
| 16 |
-
x = InstanceNormalization()(x)
|
| 17 |
-
x = LeakyReLU(0.2)(x)
|
| 18 |
-
x = Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
|
| 19 |
-
|
| 20 |
-
if resample:
|
| 21 |
-
x = AveragePooling2D()(x)
|
| 22 |
-
|
| 23 |
-
x = Add()([x, r])
|
| 24 |
-
|
| 25 |
-
return x
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
def residual_up_block(inputs, filters, resample=True, name=None):
|
| 29 |
-
x, z_id = inputs
|
| 30 |
-
|
| 31 |
-
r = Conv2D(filters=filters, kernel_size=1, strides=1, padding='same')(x)
|
| 32 |
-
if resample:
|
| 33 |
-
r = UpSampling2D(interpolation='bilinear')(r)
|
| 34 |
-
|
| 35 |
-
x = InstanceNormalization()(x)
|
| 36 |
-
x = AdaIN()([x, z_id])
|
| 37 |
-
x = LeakyReLU(0.2)(x)
|
| 38 |
-
x = Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
|
| 39 |
-
|
| 40 |
-
if resample:
|
| 41 |
-
x = UpSampling2D(interpolation='bilinear')(x)
|
| 42 |
-
|
| 43 |
-
x = Add()([x, r])
|
| 44 |
-
|
| 45 |
-
return x
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
def adaptive_attention(inputs, filters, name=None):
|
| 49 |
-
x_t, x_s = inputs
|
| 50 |
-
|
| 51 |
-
m = Concatenate(axis=-1)([x_t, x_s])
|
| 52 |
-
m = Conv2D(filters=filters // 4, kernel_size=3, strides=1, padding='same')(m)
|
| 53 |
-
m = LeakyReLU(0.2)(m)
|
| 54 |
-
m = InstanceNormalization()(m)
|
| 55 |
-
m = Conv2D(filters=filters, kernel_size=1, strides=1, padding='same', activation='sigmoid', name=name)(m)
|
| 56 |
-
|
| 57 |
-
x = AdaptiveAttention()([m, x_t, x_s])
|
| 58 |
-
|
| 59 |
-
return x
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
def adaptive_fusion_up_block(inputs, filters, resample=True, name=None):
|
| 63 |
-
x_t, x_s, z_id = inputs
|
| 64 |
-
|
| 65 |
-
x = adaptive_attention([x_t, x_s], x_t.shape[-1], name=name)
|
| 66 |
-
|
| 67 |
-
r = Conv2D(filters=filters, kernel_size=1, strides=1, padding='same')(x)
|
| 68 |
-
if resample:
|
| 69 |
-
r = UpSampling2D(interpolation='bilinear')(r)
|
| 70 |
-
|
| 71 |
-
x = InstanceNormalization()(x)
|
| 72 |
-
x = AdaIN()([x, z_id])
|
| 73 |
-
x = LeakyReLU(0.2)(x)
|
| 74 |
-
x = Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
|
| 75 |
-
|
| 76 |
-
if resample:
|
| 77 |
-
x = UpSampling2D(interpolation='bilinear')(x)
|
| 78 |
-
|
| 79 |
-
x = Add()([x, r])
|
| 80 |
-
|
| 81 |
-
return x
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
def dual_adaptive_fusion_up_block(inputs, filters, resample=True, name=None):
|
| 85 |
-
x_t, x_s, z_id = inputs
|
| 86 |
-
|
| 87 |
-
x = adaptive_attention([x_t, x_s], x_t.shape[-1], name=name + '_0')
|
| 88 |
-
x = adaptive_attention([x_t, x], x_t.shape[-1], name=name + '_1')
|
| 89 |
-
|
| 90 |
-
r = Conv2D(filters=filters, kernel_size=1, strides=1, padding='same')(x)
|
| 91 |
-
if resample:
|
| 92 |
-
r = UpSampling2D(interpolation='bilinear')(r)
|
| 93 |
-
|
| 94 |
-
x = InstanceNormalization()(x)
|
| 95 |
-
x = AdaIN()([x, z_id])
|
| 96 |
-
x = LeakyReLU(0.2)(x)
|
| 97 |
-
x = Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
|
| 98 |
-
|
| 99 |
-
if resample:
|
| 100 |
-
x = UpSampling2D(interpolation='bilinear')(x)
|
| 101 |
-
|
| 102 |
-
x = Add()([x, r])
|
| 103 |
-
|
| 104 |
-
return x
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
def adaptive_fusion_up_block_no_add(inputs, filters, resample=True, name=None):
|
| 108 |
-
x_t, x_s, z_id = inputs
|
| 109 |
-
|
| 110 |
-
x = adaptive_attention([x_t, x_s], x_t.shape[-1], name=name)
|
| 111 |
-
|
| 112 |
-
x = InstanceNormalization()(x)
|
| 113 |
-
x = AdaIN()([x, z_id])
|
| 114 |
-
x = LeakyReLU(0.2)(x)
|
| 115 |
-
x = Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
|
| 116 |
-
|
| 117 |
-
return x
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
def adaptive_fusion_up_block_concat_baseline(inputs, filters, resample=True, name=None):
|
| 121 |
-
x_t, x_s, z_id = inputs
|
| 122 |
-
|
| 123 |
-
x = Concatenate(axis=-1)([x_t, x_s])
|
| 124 |
-
|
| 125 |
-
r = Conv2D(filters=filters, kernel_size=1, strides=1, padding='same')(x)
|
| 126 |
-
if resample:
|
| 127 |
-
r = UpSampling2D(interpolation='bilinear')(r)
|
| 128 |
-
|
| 129 |
-
x = InstanceNormalization()(x)
|
| 130 |
-
x = AdaIN()([x, z_id])
|
| 131 |
-
x = LeakyReLU(0.2)(x)
|
| 132 |
-
x = Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
|
| 133 |
-
|
| 134 |
-
if resample:
|
| 135 |
-
x = UpSampling2D(interpolation='bilinear')(x)
|
| 136 |
-
|
| 137 |
-
x = Add(name=name if name == 'final' else None)([x, r])
|
| 138 |
-
|
| 139 |
-
return x
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
def adaptive_fusion_up_block_add_baseline(inputs, filters, resample=True, name=None):
|
| 143 |
-
x_t, x_s, z_id = inputs
|
| 144 |
-
|
| 145 |
-
x = Add()([x_t, x_s])
|
| 146 |
-
|
| 147 |
-
r = Conv2D(filters=filters, kernel_size=1, strides=1, padding='same')(x)
|
| 148 |
-
if resample:
|
| 149 |
-
r = UpSampling2D(interpolation='bilinear')(r)
|
| 150 |
-
|
| 151 |
-
x = InstanceNormalization()(x)
|
| 152 |
-
x = AdaIN()([x, z_id])
|
| 153 |
-
x = LeakyReLU(0.2)(x)
|
| 154 |
-
x = Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
|
| 155 |
-
|
| 156 |
-
if resample:
|
| 157 |
-
x = UpSampling2D(interpolation='bilinear')(x)
|
| 158 |
-
|
| 159 |
-
x = Add()([x, r])
|
| 160 |
-
|
| 161 |
-
return x
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
def get_generator_original(mapping_depth=4, mapping_size=256):
|
| 165 |
-
x_target = Input(shape=(256, 256, 3))
|
| 166 |
-
z_source = Input(shape=(512,))
|
| 167 |
-
|
| 168 |
-
z_id = z_source
|
| 169 |
-
for m in range(np.max([mapping_depth - 1, 0])):
|
| 170 |
-
z_id = Dense(mapping_size)(z_id)
|
| 171 |
-
z_id = LeakyReLU(0.2)(z_id)
|
| 172 |
-
if mapping_depth >= 1:
|
| 173 |
-
z_id = Dense(mapping_size)(z_id)
|
| 174 |
-
|
| 175 |
-
x_0 = Conv2D(filters=64, kernel_size=3, strides=1, padding='same')(x_target) # 256
|
| 176 |
-
|
| 177 |
-
x_1 = residual_down_block(x_0, 128) # 128
|
| 178 |
-
|
| 179 |
-
x_2 = residual_down_block(x_1, 256) # 64
|
| 180 |
-
|
| 181 |
-
x_3 = residual_down_block(x_2, 512)
|
| 182 |
-
|
| 183 |
-
x_4 = residual_down_block(x_3, 512)
|
| 184 |
-
|
| 185 |
-
x_5 = residual_down_block(x_4, 512)
|
| 186 |
-
|
| 187 |
-
x_6 = residual_down_block(x_5, 512, resample=False)
|
| 188 |
-
|
| 189 |
-
u_5 = residual_up_block([x_6, z_id], 512, resample=False)
|
| 190 |
-
|
| 191 |
-
u_4 = residual_up_block([u_5, z_id], 512)
|
| 192 |
-
|
| 193 |
-
u_3 = residual_up_block([u_4, z_id], 512)
|
| 194 |
-
|
| 195 |
-
u_2 = residual_up_block([u_3, z_id], 256) # 64
|
| 196 |
-
|
| 197 |
-
u_1 = adaptive_fusion_up_block([x_2, u_2, z_id], 128, name='aff_attention_64x64') # 128
|
| 198 |
-
|
| 199 |
-
u_0 = adaptive_fusion_up_block([x_1, u_1, z_id], 64, name='aff_attention_128x128') # 256
|
| 200 |
-
|
| 201 |
-
out = adaptive_fusion_up_block([x_0, u_0, z_id], 3, resample=False, name='aff_attention_256x256')
|
| 202 |
-
|
| 203 |
-
gen_model = Model([x_target, z_source], out)
|
| 204 |
-
gen_model.summary()
|
| 205 |
-
|
| 206 |
-
return gen_model
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
def make_layer(l_type, inputs, filters, resample, name=None):
|
| 210 |
-
if l_type == 'affa':
|
| 211 |
-
return adaptive_fusion_up_block(inputs, filters, resample=resample, name=name)
|
| 212 |
-
if l_type == 'd_affa':
|
| 213 |
-
return dual_adaptive_fusion_up_block(inputs, filters, resample=resample, name=name)
|
| 214 |
-
elif l_type == 'concat':
|
| 215 |
-
return adaptive_fusion_up_block_concat_baseline(inputs, filters, resample=resample, name=name)
|
| 216 |
-
elif l_type == 'no_skip':
|
| 217 |
-
return residual_up_block(inputs[1:], filters, resample=resample)
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
def get_generator(up_types=None, mapping_depth=4, mapping_size=256):
|
| 221 |
-
|
| 222 |
-
if up_types is None:
|
| 223 |
-
up_types = ['no_skip', 'no_skip', 'd_affa', 'd_affa', 'd_affa', 'concat']
|
| 224 |
-
|
| 225 |
-
x_target = Input(shape=(256, 256, 3))
|
| 226 |
-
z_source = Input(shape=(512,))
|
| 227 |
-
|
| 228 |
-
z_id = z_source
|
| 229 |
-
for m in range(np.max([mapping_depth - 1, 0])):
|
| 230 |
-
z_id = Dense(mapping_size)(z_id)
|
| 231 |
-
z_id = LeakyReLU(0.2)(z_id)
|
| 232 |
-
if mapping_depth >= 1:
|
| 233 |
-
z_id = Dense(mapping_size)(z_id)
|
| 234 |
-
|
| 235 |
-
x_0 = Conv2D(filters=64, kernel_size=3, strides=1, padding='same')(x_target) # 256
|
| 236 |
-
|
| 237 |
-
x_1 = residual_down_block(x_0, 128) # 128
|
| 238 |
-
|
| 239 |
-
x_2 = residual_down_block(x_1, 256) # 64
|
| 240 |
-
|
| 241 |
-
x_3 = residual_down_block(x_2, 512)
|
| 242 |
-
|
| 243 |
-
x_4 = residual_down_block(x_3, 512)
|
| 244 |
-
|
| 245 |
-
x_5 = residual_down_block(x_4, 512)
|
| 246 |
-
|
| 247 |
-
x_6 = residual_down_block(x_5, 512, resample=False)
|
| 248 |
-
|
| 249 |
-
u_5 = residual_up_block([x_6, z_id], 512, resample=False)
|
| 250 |
-
|
| 251 |
-
u_4 = make_layer(up_types[0], [x_5, u_5, z_id], 512, resample=True, name='16x16')
|
| 252 |
-
|
| 253 |
-
u_3 = make_layer(up_types[1], [x_4, u_4, z_id], 512, resample=True, name='32x32')
|
| 254 |
-
|
| 255 |
-
u_2 = make_layer(up_types[2], [x_3, u_3, z_id], 256, resample=True, name='64x64')
|
| 256 |
-
|
| 257 |
-
u_1 = make_layer(up_types[3], [x_2, u_2, z_id], 128, resample=True, name='128x128')
|
| 258 |
-
|
| 259 |
-
u_0 = make_layer(up_types[4], [x_1, u_1, z_id], 64, resample=True, name='256x256')
|
| 260 |
-
|
| 261 |
-
out = make_layer(up_types[5], [x_0, u_0, z_id], 3, resample=False, name='final')
|
| 262 |
-
|
| 263 |
-
gen_model = Model([x_target, z_source], out)
|
| 264 |
-
gen_model.summary()
|
| 265 |
-
|
| 266 |
-
return gen_model
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
def get_generator_large(up_types=None, mapping_depth=4, mapping_size=512):
|
| 270 |
-
|
| 271 |
-
if up_types is None:
|
| 272 |
-
up_types = ['no_skip', 'no_skip', 'affa', 'affa', 'affa', 'concat']
|
| 273 |
-
|
| 274 |
-
x_target = Input(shape=(256, 256, 3))
|
| 275 |
-
z_source = Input(shape=(512,))
|
| 276 |
-
|
| 277 |
-
z_id = z_source
|
| 278 |
-
for m in range(np.max([mapping_depth - 1, 0])):
|
| 279 |
-
z_id = Dense(mapping_size)(z_id)
|
| 280 |
-
z_id = LeakyReLU(0.2)(z_id)
|
| 281 |
-
if mapping_depth >= 1:
|
| 282 |
-
z_id = Dense(mapping_size)(z_id)
|
| 283 |
-
|
| 284 |
-
x_0 = Conv2D(filters=64, kernel_size=3, strides=1, padding='same')(x_target) # 256
|
| 285 |
-
|
| 286 |
-
x_1 = residual_down_block(x_0, 128) # 128
|
| 287 |
-
|
| 288 |
-
x_2 = residual_down_block(x_1, 256) # 64
|
| 289 |
-
|
| 290 |
-
x_3 = residual_down_block(x_2, 512)
|
| 291 |
-
|
| 292 |
-
x_4 = residual_down_block(x_3, 512)
|
| 293 |
-
|
| 294 |
-
x_5 = residual_down_block(x_4, 512)
|
| 295 |
-
|
| 296 |
-
b_0 = residual_up_block([x_5, z_id], 512, resample=False)
|
| 297 |
-
|
| 298 |
-
b_1 = residual_up_block([b_0, z_id], 512, resample=False)
|
| 299 |
-
|
| 300 |
-
b_2 = residual_up_block([b_1, z_id], 512, resample=False)
|
| 301 |
-
|
| 302 |
-
u_5 = residual_up_block([b_2, z_id], 512, resample=False)
|
| 303 |
-
|
| 304 |
-
u_4 = make_layer(up_types[0], [x_5, u_5, z_id], 512, resample=True, name='16x16')
|
| 305 |
-
|
| 306 |
-
u_3 = make_layer(up_types[1], [x_4, u_4, z_id], 512, resample=True, name='32x32')
|
| 307 |
-
|
| 308 |
-
u_2 = make_layer(up_types[2], [x_3, u_3, z_id], 256, resample=True, name='64x64')
|
| 309 |
-
|
| 310 |
-
u_1 = make_layer(up_types[3], [x_2, u_2, z_id], 128, resample=True, name='128x128')
|
| 311 |
-
|
| 312 |
-
u_0 = make_layer(up_types[4], [x_1, u_1, z_id], 64, resample=True, name='256x256')
|
| 313 |
-
|
| 314 |
-
out = make_layer(up_types[5], [x_0, u_0, z_id], 3, resample=False, name='final')
|
| 315 |
-
|
| 316 |
-
gen_model = Model([x_target, z_source], out)
|
| 317 |
-
gen_model.summary()
|
| 318 |
-
|
| 319 |
-
return gen_model
|
| 320 |
-
|
| 321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|