Spaces:
Runtime error
Runtime error
resolve deps
Browse files- .gitignore +7 -0
- README.md +1 -1
- app_gradio.py +471 -0
- requirements.txt +1 -0
- static/app_tmp/temp_input.png +0 -0
.gitignore
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
checkpoint-2500/
|
| 2 |
+
t2v_sketch-lora/
|
| 3 |
+
__pycache__/
|
| 4 |
+
static/app_tmp/gif_logs/*
|
| 5 |
+
static/app_tmp/mp4_logs/*
|
| 6 |
+
static/app_tmp/png_logs/*
|
| 7 |
+
static/uploads/*
|
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 🚀
|
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
-
app_file:
|
| 8 |
pinned: false
|
| 9 |
---
|
| 10 |
|
|
|
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
+
app_file: app_gradio.py
|
| 8 |
pinned: false
|
| 9 |
---
|
| 10 |
|
app_gradio.py
ADDED
|
@@ -0,0 +1,471 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import torch
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import torchvision
|
| 6 |
+
import warnings
|
| 7 |
+
import numpy as np
|
| 8 |
+
from PIL import Image, ImageSequence
|
| 9 |
+
from moviepy.editor import VideoFileClip
|
| 10 |
+
import imageio
|
| 11 |
+
from diffusers import (
|
| 12 |
+
TextToVideoSDPipeline,
|
| 13 |
+
AutoencoderKL,
|
| 14 |
+
DDPMScheduler,
|
| 15 |
+
DDIMScheduler,
|
| 16 |
+
UNet3DConditionModel,
|
| 17 |
+
)
|
| 18 |
+
from transformers import CLIPTokenizer, CLIPTextModel
|
| 19 |
+
from diffusers.utils import export_to_video
|
| 20 |
+
from typing import List
|
| 21 |
+
from text2vid_modded import TextToVideoSDPipelineModded
|
| 22 |
+
from invert_utils import ddim_inversion as dd_inversion
|
| 23 |
+
from gifs_filter import filter
|
| 24 |
+
import subprocess
|
| 25 |
+
import spaces
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def load_frames(image: Image, mode='RGBA'):
|
| 29 |
+
return np.array([np.array(frame.convert(mode)) for frame in ImageSequence.Iterator(image)])
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def run_setup():
|
| 33 |
+
try:
|
| 34 |
+
# Step 1: Install Git LFS
|
| 35 |
+
subprocess.run(["git", "lfs", "install"], check=True)
|
| 36 |
+
|
| 37 |
+
# Step 2: Clone the repository
|
| 38 |
+
repo_url = "https://huggingface.co/Hmrishav/t2v_sketch-lora"
|
| 39 |
+
subprocess.run(["git", "clone", repo_url], check=True)
|
| 40 |
+
|
| 41 |
+
# Step 3: Move the checkpoint file
|
| 42 |
+
source = "t2v_sketch-lora/checkpoint-2500"
|
| 43 |
+
destination = "./checkpoint-2500/"
|
| 44 |
+
os.rename(source, destination)
|
| 45 |
+
|
| 46 |
+
print("Setup completed successfully!")
|
| 47 |
+
except subprocess.CalledProcessError as e:
|
| 48 |
+
print(f"Error during setup: {e}")
|
| 49 |
+
except FileNotFoundError as e:
|
| 50 |
+
print(f"File operation error: {e}")
|
| 51 |
+
except Exception as e:
|
| 52 |
+
print(f"Unexpected error: {e}")
|
| 53 |
+
|
| 54 |
+
# Automatically run setup during app initialization
|
| 55 |
+
run_setup()
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def save_gif(frames, path):
|
| 59 |
+
imageio.mimsave(
|
| 60 |
+
path,
|
| 61 |
+
[frame.astype(np.uint8) for frame in frames],
|
| 62 |
+
format="GIF",
|
| 63 |
+
duration=1 / 10,
|
| 64 |
+
loop=0 # 0 means infinite loop
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
def load_image(imgname, target_size=None):
|
| 68 |
+
pil_img = Image.open(imgname).convert('RGB')
|
| 69 |
+
if target_size:
|
| 70 |
+
if isinstance(target_size, int):
|
| 71 |
+
target_size = (target_size, target_size)
|
| 72 |
+
pil_img = pil_img.resize(target_size, Image.Resampling.LANCZOS)
|
| 73 |
+
return torchvision.transforms.ToTensor()(pil_img).unsqueeze(0)
|
| 74 |
+
|
| 75 |
+
def prepare_latents(pipe, x_aug):
|
| 76 |
+
with torch.cuda.amp.autocast():
|
| 77 |
+
batch_size, num_frames, channels, height, width = x_aug.shape
|
| 78 |
+
x_aug = x_aug.reshape(batch_size * num_frames, channels, height, width)
|
| 79 |
+
latents = pipe.vae.encode(x_aug).latent_dist.sample()
|
| 80 |
+
latents = latents.view(batch_size, num_frames, -1, latents.shape[2], latents.shape[3])
|
| 81 |
+
latents = latents.permute(0, 2, 1, 3, 4)
|
| 82 |
+
return pipe.vae.config.scaling_factor * latents
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
@torch.no_grad()
|
| 86 |
+
def invert(pipe, inv, load_name, device="cuda", dtype=torch.bfloat16):
|
| 87 |
+
input_img = [load_image(load_name, 256).to(device, dtype=dtype).unsqueeze(1)] * 5
|
| 88 |
+
input_img = torch.cat(input_img, dim=1)
|
| 89 |
+
latents = prepare_latents(pipe, input_img).to(torch.bfloat16)
|
| 90 |
+
inv.set_timesteps(25)
|
| 91 |
+
id_latents = dd_inversion(pipe, inv, video_latent=latents, num_inv_steps=25, prompt="")[-1].to(dtype)
|
| 92 |
+
return torch.mean(id_latents, dim=2, keepdim=True)
|
| 93 |
+
|
| 94 |
+
def load_primary_models(pretrained_model_path):
|
| 95 |
+
return (
|
| 96 |
+
DDPMScheduler.from_config(pretrained_model_path, subfolder="scheduler"),
|
| 97 |
+
CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer"),
|
| 98 |
+
CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder"),
|
| 99 |
+
AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae"),
|
| 100 |
+
UNet3DConditionModel.from_pretrained(pretrained_model_path, subfolder="unet"),
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
def initialize_pipeline(model: str, device: str = "cuda"):
|
| 104 |
+
with warnings.catch_warnings():
|
| 105 |
+
warnings.simplefilter("ignore")
|
| 106 |
+
scheduler, tokenizer, text_encoder, vae, unet = load_primary_models(model)
|
| 107 |
+
pipe = TextToVideoSDPipeline.from_pretrained(
|
| 108 |
+
pretrained_model_name_or_path="damo-vilab/text-to-video-ms-1.7b",
|
| 109 |
+
scheduler=scheduler,
|
| 110 |
+
tokenizer=tokenizer,
|
| 111 |
+
text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16),
|
| 112 |
+
vae=vae.to(device=device, dtype=torch.bfloat16),
|
| 113 |
+
unet=unet.to(device=device, dtype=torch.bfloat16),
|
| 114 |
+
)
|
| 115 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
| 116 |
+
return pipe, pipe.scheduler
|
| 117 |
+
|
| 118 |
+
# Initialize the models
|
| 119 |
+
LORA_CHECKPOINT = "checkpoint-2500"
|
| 120 |
+
os.environ["TORCH_CUDNN_V8_API_ENABLED"] = "1"
|
| 121 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 122 |
+
dtype = torch.bfloat16
|
| 123 |
+
|
| 124 |
+
pipe_inversion, inv = initialize_pipeline(LORA_CHECKPOINT, device)
|
| 125 |
+
pipe = TextToVideoSDPipelineModded.from_pretrained(
|
| 126 |
+
pretrained_model_name_or_path="damo-vilab/text-to-video-ms-1.7b",
|
| 127 |
+
scheduler=pipe_inversion.scheduler,
|
| 128 |
+
tokenizer=pipe_inversion.tokenizer,
|
| 129 |
+
text_encoder=pipe_inversion.text_encoder,
|
| 130 |
+
vae=pipe_inversion.vae,
|
| 131 |
+
unet=pipe_inversion.unet,
|
| 132 |
+
).to(device)
|
| 133 |
+
|
| 134 |
+
@spaces.GPU(duration=100)
|
| 135 |
+
@torch.no_grad()
|
| 136 |
+
def process_video(num_frames, num_seeds, generator, exp_dir, load_name, caption, lambda_):
|
| 137 |
+
pipe_inversion.to(device)
|
| 138 |
+
id_latents = invert(pipe_inversion, inv, load_name).to(device, dtype=dtype)
|
| 139 |
+
latents = id_latents.repeat(num_seeds, 1, 1, 1, 1)
|
| 140 |
+
generator = [torch.Generator(device="cuda").manual_seed(i) for i in range(num_seeds)]
|
| 141 |
+
video_frames = pipe(
|
| 142 |
+
prompt=caption,
|
| 143 |
+
negative_prompt="",
|
| 144 |
+
num_frames=num_frames,
|
| 145 |
+
num_inference_steps=25,
|
| 146 |
+
inv_latents=latents,
|
| 147 |
+
guidance_scale=9,
|
| 148 |
+
generator=generator,
|
| 149 |
+
lambda_=lambda_,
|
| 150 |
+
).frames
|
| 151 |
+
|
| 152 |
+
gifs = []
|
| 153 |
+
for seed in range(num_seeds):
|
| 154 |
+
vid_name = f"{exp_dir}/mp4_logs/vid_{os.path.basename(load_name)[:-4]}-rand{seed}.mp4"
|
| 155 |
+
gif_name = f"{exp_dir}/gif_logs/vid_{os.path.basename(load_name)[:-4]}-rand{seed}.gif"
|
| 156 |
+
|
| 157 |
+
os.makedirs(os.path.dirname(vid_name), exist_ok=True)
|
| 158 |
+
os.makedirs(os.path.dirname(gif_name), exist_ok=True)
|
| 159 |
+
|
| 160 |
+
video_path = export_to_video(video_frames[seed], output_video_path=vid_name)
|
| 161 |
+
VideoFileClip(vid_name).write_gif(gif_name)
|
| 162 |
+
|
| 163 |
+
with Image.open(gif_name) as im:
|
| 164 |
+
frames = load_frames(im)
|
| 165 |
+
|
| 166 |
+
frames_collect = np.empty((0, 1024, 1024), int)
|
| 167 |
+
for frame in frames:
|
| 168 |
+
frame = cv2.resize(frame, (1024, 1024))[:, :, :3]
|
| 169 |
+
frame = cv2.cvtColor(255 - frame, cv2.COLOR_RGB2GRAY)
|
| 170 |
+
_, frame = cv2.threshold(255 - frame, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
| 171 |
+
frames_collect = np.append(frames_collect, [frame], axis=0)
|
| 172 |
+
|
| 173 |
+
save_gif(frames_collect, gif_name)
|
| 174 |
+
gifs.append(gif_name)
|
| 175 |
+
|
| 176 |
+
return gifs
|
| 177 |
+
|
| 178 |
+
def generate_output(image, prompt: str, num_seeds: int = 3, lambda_value: float = 0.5) -> List[str]:
|
| 179 |
+
"""Main function to generate output GIFs"""
|
| 180 |
+
exp_dir = "static/app_tmp"
|
| 181 |
+
os.makedirs(exp_dir, exist_ok=True)
|
| 182 |
+
|
| 183 |
+
# Save the input image temporarily
|
| 184 |
+
temp_image_path = os.path.join(exp_dir, "temp_input.png")
|
| 185 |
+
image.save(temp_image_path)
|
| 186 |
+
|
| 187 |
+
# Generate the GIFs
|
| 188 |
+
generated_gifs = process_video(
|
| 189 |
+
num_frames=10,
|
| 190 |
+
num_seeds=num_seeds,
|
| 191 |
+
generator=None,
|
| 192 |
+
exp_dir=exp_dir,
|
| 193 |
+
load_name=temp_image_path,
|
| 194 |
+
caption=prompt,
|
| 195 |
+
lambda_=1 - lambda_value
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
# Apply filtering (assuming filter function is imported)
|
| 199 |
+
filtered_gifs = filter(generated_gifs, temp_image_path)
|
| 200 |
+
|
| 201 |
+
return filtered_gifs
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def create_gradio_interface():
|
| 205 |
+
with gr.Blocks(css="""
|
| 206 |
+
.container {
|
| 207 |
+
max-width: 1200px;
|
| 208 |
+
margin: 0 auto;
|
| 209 |
+
padding: 20px;
|
| 210 |
+
}
|
| 211 |
+
.example-gallery {
|
| 212 |
+
margin: 20px 0;
|
| 213 |
+
padding: 20px;
|
| 214 |
+
background: #f7f7f7;
|
| 215 |
+
border-radius: 8px;
|
| 216 |
+
}
|
| 217 |
+
.selected-example {
|
| 218 |
+
margin: 20px 0;
|
| 219 |
+
padding: 20px;
|
| 220 |
+
background: #ffffff;
|
| 221 |
+
border-radius: 8px;
|
| 222 |
+
|
| 223 |
+
}
|
| 224 |
+
.controls-section {
|
| 225 |
+
background: #ffffff;
|
| 226 |
+
padding: 20px;
|
| 227 |
+
margin: 20px 0;
|
| 228 |
+
border-radius: 8px;
|
| 229 |
+
|
| 230 |
+
}
|
| 231 |
+
.output-gallery {
|
| 232 |
+
min-height: 500px;
|
| 233 |
+
margin: 20px 0;
|
| 234 |
+
padding: 20px;
|
| 235 |
+
background: #f7f7f7;
|
| 236 |
+
border-radius: 8px;
|
| 237 |
+
}
|
| 238 |
+
.example-item {
|
| 239 |
+
border-radius: 8px;
|
| 240 |
+
overflow: hidden;
|
| 241 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 242 |
+
transition: transform 0.2s;
|
| 243 |
+
cursor: pointer;
|
| 244 |
+
}
|
| 245 |
+
.example-item:hover {
|
| 246 |
+
transform: scale(1.05);
|
| 247 |
+
}
|
| 248 |
+
/* Prevent gallery images from expanding */
|
| 249 |
+
.gallery-image {
|
| 250 |
+
height: 200px !important;
|
| 251 |
+
width: 200px !important;
|
| 252 |
+
object-fit: cover !important;
|
| 253 |
+
}
|
| 254 |
+
.generate-btn {
|
| 255 |
+
width: 100%;
|
| 256 |
+
margin-top: 1rem;
|
| 257 |
+
}
|
| 258 |
+
|
| 259 |
+
.generate-btn:disabled {
|
| 260 |
+
opacity: 0.7;
|
| 261 |
+
cursor: not-allowed;
|
| 262 |
+
}
|
| 263 |
+
""") as demo:
|
| 264 |
+
gr.Markdown(
|
| 265 |
+
"""
|
| 266 |
+
|
| 267 |
+
<div align="center" id = "user-content-toc">
|
| 268 |
+
<img align="left" width="70" height="70" src="https://github.com/user-attachments/assets/c61cec76-3c4b-42eb-8c65-f07e0166b7d8" alt="">
|
| 269 |
+
|
| 270 |
+
# [FlipSketch: Flipping assets Drawings to Text-Guided Sketch Animations](https://hmrishavbandy.github.io/flipsketch-web/)
|
| 271 |
+
## [Hmrishav Bandyopadhyay](https://hmrishavbandy.github.io/) . [Yi-Zhe Song](https://personalpages.surrey.ac.uk/y.song/)
|
| 272 |
+
</div>
|
| 273 |
+
|
| 274 |
+
"""
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
with gr.Tabs() as tabs:
|
| 278 |
+
# First tab: Examples (Secure)
|
| 279 |
+
with gr.Tab("Examples"):
|
| 280 |
+
gr.Markdown("## Step 1 👉 Select a sketch from the gallery of sketches")
|
| 281 |
+
examples_dir = "static/examples"
|
| 282 |
+
if os.path.exists(examples_dir):
|
| 283 |
+
example_images = []
|
| 284 |
+
for example in os.listdir(examples_dir):
|
| 285 |
+
if example.endswith(('.png', '.jpg', '.jpeg')):
|
| 286 |
+
example_path = os.path.join(examples_dir, example)
|
| 287 |
+
example_images.append(Image.open(example_path))
|
| 288 |
+
|
| 289 |
+
example_selection = gr.Gallery(
|
| 290 |
+
example_images,
|
| 291 |
+
label="Sketch Gallery",
|
| 292 |
+
elem_classes="example-gallery",
|
| 293 |
+
columns=4,
|
| 294 |
+
rows=2,
|
| 295 |
+
height="auto",
|
| 296 |
+
allow_preview=False, # Disable preview expansion
|
| 297 |
+
show_share_button=False,
|
| 298 |
+
interactive=False,
|
| 299 |
+
selected_index=None # Don't pre-select any image
|
| 300 |
+
)
|
| 301 |
+
gr.Markdown("## Step 2 👉 Describe the motion you want to generate")
|
| 302 |
+
with gr.Group(elem_classes="selected-example"):
|
| 303 |
+
with gr.Row():
|
| 304 |
+
selected_example = gr.Image(
|
| 305 |
+
type="pil",
|
| 306 |
+
label="Selected Sketch",
|
| 307 |
+
scale=1,
|
| 308 |
+
interactive=False,
|
| 309 |
+
show_download_button=False,
|
| 310 |
+
height=300 # Fixed height for consistency
|
| 311 |
+
)
|
| 312 |
+
with gr.Column(scale=2):
|
| 313 |
+
example_prompt = gr.Textbox(
|
| 314 |
+
label="Prompt",
|
| 315 |
+
placeholder="Describe the motion...",
|
| 316 |
+
lines=3
|
| 317 |
+
)
|
| 318 |
+
with gr.Row():
|
| 319 |
+
example_num_seeds = gr.Slider(
|
| 320 |
+
minimum=1,
|
| 321 |
+
maximum=10,
|
| 322 |
+
value=5,
|
| 323 |
+
step=1,
|
| 324 |
+
label="Seeds"
|
| 325 |
+
)
|
| 326 |
+
example_lambda = gr.Slider(
|
| 327 |
+
minimum=0,
|
| 328 |
+
maximum=1,
|
| 329 |
+
value=0.5,
|
| 330 |
+
step=0.1,
|
| 331 |
+
label="Motion Strength"
|
| 332 |
+
)
|
| 333 |
+
example_generate_btn = gr.Button(
|
| 334 |
+
"Generate Animation",
|
| 335 |
+
variant="primary",
|
| 336 |
+
elem_classes="generate-btn",
|
| 337 |
+
interactive=True,
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
gr.Markdown("## Result 👉 Generated Animations ❤️")
|
| 343 |
+
example_gallery = gr.Gallery(
|
| 344 |
+
label="Results",
|
| 345 |
+
elem_classes="output-gallery",
|
| 346 |
+
columns=3,
|
| 347 |
+
rows=2,
|
| 348 |
+
height="auto",
|
| 349 |
+
allow_preview=False, # Disable preview expansion
|
| 350 |
+
show_share_button=False,
|
| 351 |
+
object_fit="cover",
|
| 352 |
+
preview=False
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
# Second tab: Upload
|
| 356 |
+
with gr.Tab("Upload Your Sketch"):
|
| 357 |
+
with gr.Group(elem_classes="selected-example"):
|
| 358 |
+
with gr.Row():
|
| 359 |
+
upload_image = gr.Image(
|
| 360 |
+
type="pil",
|
| 361 |
+
label="Upload Your Sketch",
|
| 362 |
+
scale=1,
|
| 363 |
+
height=300, # Fixed height for consistency
|
| 364 |
+
show_download_button=False,
|
| 365 |
+
sources=["upload"],
|
| 366 |
+
)
|
| 367 |
+
with gr.Column(scale=2):
|
| 368 |
+
upload_prompt = gr.Textbox(
|
| 369 |
+
label="Prompt",
|
| 370 |
+
placeholder="Describe what you want to generate...",
|
| 371 |
+
lines=3
|
| 372 |
+
)
|
| 373 |
+
with gr.Row():
|
| 374 |
+
upload_num_seeds = gr.Slider(
|
| 375 |
+
minimum=1,
|
| 376 |
+
maximum=10,
|
| 377 |
+
value=5,
|
| 378 |
+
step=1,
|
| 379 |
+
label="Number of Variations"
|
| 380 |
+
)
|
| 381 |
+
upload_lambda = gr.Slider(
|
| 382 |
+
minimum=0,
|
| 383 |
+
maximum=1,
|
| 384 |
+
value=0.5,
|
| 385 |
+
step=0.1,
|
| 386 |
+
label="Motion Strength"
|
| 387 |
+
)
|
| 388 |
+
upload_generate_btn = gr.Button(
|
| 389 |
+
"Generate Animation",
|
| 390 |
+
variant="primary",
|
| 391 |
+
elem_classes="generate-btn",
|
| 392 |
+
size="lg",
|
| 393 |
+
interactive=True,
|
| 394 |
+
)
|
| 395 |
+
|
| 396 |
+
gr.Markdown("## Result 👉 Generated Animations ❤️")
|
| 397 |
+
upload_gallery = gr.Gallery(
|
| 398 |
+
label="Results",
|
| 399 |
+
elem_classes="output-gallery",
|
| 400 |
+
columns=3,
|
| 401 |
+
rows=2,
|
| 402 |
+
height="auto",
|
| 403 |
+
allow_preview=False, # Disable preview expansion
|
| 404 |
+
show_share_button=False,
|
| 405 |
+
object_fit="cover",
|
| 406 |
+
preview=False
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
# Event handlers
|
| 410 |
+
def select_example(evt: gr.SelectData):
|
| 411 |
+
prompts = {'sketch1.png': 'The camel walks slowly',
|
| 412 |
+
'sketch2.png': 'The wine in the wine glass sways from side to side',
|
| 413 |
+
'sketch3.png': 'The squirrel is eating a nut',
|
| 414 |
+
'sketch4.png': 'The surfer surfs on the waves',
|
| 415 |
+
'sketch5.png': 'A galloping horse',
|
| 416 |
+
'sketch6.png': 'The cat walks forward',
|
| 417 |
+
'sketch7.png': 'The eagle flies in the sky',
|
| 418 |
+
'sketch8.png': 'The flower is blooming slowly',
|
| 419 |
+
'sketch9.png': 'The reindeer looks around',
|
| 420 |
+
'sketch10.png': 'The cloud floats in the sky',
|
| 421 |
+
'sketch11.png': 'The jazz saxophonist performs on stage with a rhythmic sway, his upper body sways subtly to the rhythm of the music.',
|
| 422 |
+
'sketch12.png': 'The biker rides on the road',}
|
| 423 |
+
if evt.index < len(example_images):
|
| 424 |
+
example_img = example_images[evt.index]
|
| 425 |
+
prompt_text = prompts.get(os.path.basename(example_img.filename), "")
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
return [
|
| 429 |
+
example_img,
|
| 430 |
+
prompt_text
|
| 431 |
+
]
|
| 432 |
+
return [None, ""]
|
| 433 |
+
|
| 434 |
+
example_selection.select(
|
| 435 |
+
select_example,
|
| 436 |
+
None,
|
| 437 |
+
[selected_example, example_prompt]
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
example_generate_btn.click(
|
| 441 |
+
fn=generate_output,
|
| 442 |
+
inputs=[
|
| 443 |
+
selected_example,
|
| 444 |
+
example_prompt,
|
| 445 |
+
example_num_seeds,
|
| 446 |
+
example_lambda
|
| 447 |
+
],
|
| 448 |
+
outputs=example_gallery
|
| 449 |
+
)
|
| 450 |
+
|
| 451 |
+
upload_generate_btn.click(
|
| 452 |
+
fn=generate_output,
|
| 453 |
+
inputs=[
|
| 454 |
+
upload_image,
|
| 455 |
+
upload_prompt,
|
| 456 |
+
upload_num_seeds,
|
| 457 |
+
upload_lambda
|
| 458 |
+
],
|
| 459 |
+
outputs=upload_gallery
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
return demo
|
| 463 |
+
|
| 464 |
+
# Launch the app
|
| 465 |
+
if __name__ == "__main__":
|
| 466 |
+
demo = create_gradio_interface()
|
| 467 |
+
demo.launch(
|
| 468 |
+
server_name="0.0.0.0",
|
| 469 |
+
server_port=7860,
|
| 470 |
+
show_api=False
|
| 471 |
+
)
|
requirements.txt
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
gunicorn
|
|
|
|
| 2 |
accelerate==0.29.2
|
| 3 |
blinker==1.9.0
|
| 4 |
certifi==2024.8.30
|
|
|
|
| 1 |
gunicorn
|
| 2 |
+
spaces
|
| 3 |
accelerate==0.29.2
|
| 4 |
blinker==1.9.0
|
| 5 |
certifi==2024.8.30
|
static/app_tmp/temp_input.png
ADDED
|