Spaces:
Running
on
Zero
Running
on
Zero
| import tempfile | |
| import time | |
| from collections.abc import Sequence | |
| from typing import Any, cast | |
| import gradio as gr | |
| import numpy as np | |
| import pi_heif | |
| import spaces | |
| import torch | |
| from gradio_image_annotation import image_annotator | |
| from PIL import Image | |
| from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml | |
| from refiners.fluxion.utils import no_grad | |
| from refiners.solutions import BoxSegmenter | |
| from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor | |
| BoundingBox = tuple[int, int, int, int] | |
| pi_heif.register_heif_opener() | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # weird dance because ZeroGPU | |
| segmenter = BoxSegmenter(device="cpu") | |
| segmenter.device = device | |
| segmenter.model = segmenter.model.to(device=segmenter.device) | |
| gd_model_path = "IDEA-Research/grounding-dino-base" | |
| gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path) | |
| gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32) | |
| gd_model = gd_model.to(device=device) # type: ignore | |
| assert isinstance(gd_model, GroundingDinoForObjectDetection) | |
| def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None: | |
| if not bboxes: | |
| return None | |
| for bbox in bboxes: | |
| assert len(bbox) == 4 | |
| assert all(isinstance(x, int) for x in bbox) | |
| return ( | |
| min(bbox[0] for bbox in bboxes), | |
| min(bbox[1] for bbox in bboxes), | |
| max(bbox[2] for bbox in bboxes), | |
| max(bbox[3] for bbox in bboxes), | |
| ) | |
| def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor: | |
| x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1) | |
| return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1) | |
| def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None: | |
| assert isinstance(gd_processor, GroundingDinoProcessor) | |
| # Grounding Dino expects a dot after each category. | |
| inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device) | |
| with no_grad(): | |
| outputs = gd_model(**inputs) | |
| width, height = img.size | |
| results: dict[str, Any] = gd_processor.post_process_grounded_object_detection( | |
| outputs, | |
| inputs["input_ids"], # type: ignore | |
| target_sizes=[(height, width)], | |
| )[0] | |
| assert "boxes" in results and isinstance(results["boxes"], torch.Tensor) | |
| bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height) | |
| return bbox_union(bboxes.numpy().tolist()) | |
| def apply_mask( | |
| img: Image.Image, | |
| mask_img: Image.Image, | |
| defringe: bool = True, | |
| ) -> Image.Image: | |
| assert img.size == mask_img.size | |
| img = img.convert("RGB") | |
| mask_img = mask_img.convert("L") | |
| if defringe: | |
| # Mitigate edge halo effects via color decontamination | |
| rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0 | |
| foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha)) | |
| img = Image.fromarray((foreground * 255).astype("uint8")) | |
| result = Image.new("RGBA", img.size) | |
| result.paste(img, (0, 0), mask_img) | |
| return result | |
| def _gpu_process( | |
| img: Image.Image, | |
| prompt: str | BoundingBox | None, | |
| ) -> tuple[Image.Image, BoundingBox | None, list[str]]: | |
| # Because of ZeroGPU shenanigans, we need a *single* function with the | |
| # `spaces.GPU` decorator that *does not* contain postprocessing. | |
| time_log: list[str] = [] | |
| if isinstance(prompt, str): | |
| t0 = time.time() | |
| bbox = gd_detect(img, prompt) | |
| time_log.append(f"detect: {time.time() - t0}") | |
| if not bbox: | |
| print(time_log[0]) | |
| raise gr.Error("No object detected") | |
| else: | |
| bbox = prompt | |
| t0 = time.time() | |
| mask = segmenter(img, bbox) | |
| time_log.append(f"segment: {time.time() - t0}") | |
| return mask, bbox, time_log | |
| def _thresh(p: int) -> float: | |
| return 255.0 if p > 10 else 0.0 | |
| def _process( | |
| img: Image.Image, | |
| prompt: str | BoundingBox | None, | |
| ) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]: | |
| # enforce max dimensions for pymatting performance reasons | |
| if img.width > 2048 or img.height > 2048: | |
| orig_res = max(img.width, img.height) | |
| img.thumbnail((2048, 2048)) | |
| if isinstance(prompt, tuple): | |
| x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in prompt) | |
| prompt = (x0, y0, x1, y1) | |
| mask, bbox, time_log = _gpu_process(img, prompt) | |
| t0 = time.time() | |
| masked_alpha = apply_mask(img, mask, defringe=True) | |
| time_log.append(f"crop: {time.time() - t0}") | |
| print(", ".join(time_log)) | |
| masked_rgb = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha) | |
| thresholded = mask.point(_thresh) | |
| bbox = thresholded.getbbox() | |
| to_dl = masked_alpha.crop(bbox) | |
| temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png") | |
| to_dl.save(temp, format="PNG") | |
| temp.close() | |
| return (img, masked_rgb), gr.DownloadButton(value=temp.name, interactive=True) | |
| def process_bbox(prompts: dict[str, Any]) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]: | |
| assert isinstance(img := prompts["image"], Image.Image) | |
| assert isinstance(boxes := prompts["boxes"], list) | |
| if len(boxes) == 1: | |
| assert isinstance(box := boxes[0], dict) | |
| bbox = tuple(box[k] for k in ["xmin", "ymin", "xmax", "ymax"]) | |
| else: | |
| assert len(boxes) == 0 | |
| bbox = None | |
| return _process(img, bbox) | |
| def on_change_bbox(prompts: dict[str, Any] | None): | |
| return gr.update(interactive=prompts is not None) | |
| def process_prompt(img: Image.Image, prompt: str) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]: | |
| return _process(img, prompt) | |
| def on_change_prompt(img: Image.Image | None, prompt: str | None): | |
| return gr.update(interactive=bool(img and prompt)) | |
| TITLE = """ | |
| <h1>Finegrain Object Cutter</h1> | |
| <p> | |
| Create HD cutouts from any image with just a prompt. | |
| Powered by | |
| <a | |
| href="https://huggingface.co/finegrain/finegrain-box-segmenter" | |
| target="_blank" | |
| >Finegrain's Box Segmenter model</a>, | |
| trained with some | |
| <a | |
| href="https://huggingface.co/datasets/Nfiniteai/product-masks-sample" | |
| target="_blank" | |
| >synthetic data provided by Nfinite</a>. | |
| </p><p> | |
| For premium-quality results, | |
| <a href="https://account.finegrain.ai/sign-up?utm_source=hf&utm_campaign=cutter">try Finegrain API</a> | |
| — it's free to test! | |
| </p><p> | |
| 🌟 If you like this Space, follow <a href="https://huggingface.co/finegrain">Finegrain</a> on Hugging Face for more cool free tools! | |
| </p> | |
| """ | |
| with gr.Blocks() as demo: | |
| gr.HTML(TITLE) | |
| with gr.Tab("By prompt", id="tab_prompt"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| iimg = gr.Image(type="pil", label="Input") | |
| prompt = gr.Textbox(label="What should we cut?") | |
| btn = gr.ClearButton(value="Cut Out Object", interactive=False) | |
| with gr.Column(): | |
| oimg = gr.ImageSlider(label="Before / After", max_height=1500, show_fullscreen_button=False) | |
| dlbt = gr.DownloadButton("Download Cutout", interactive=False) | |
| btn.add(oimg) | |
| for inp in [iimg, prompt]: | |
| inp.change( | |
| fn=on_change_prompt, | |
| inputs=[iimg, prompt], | |
| outputs=[btn], | |
| ) | |
| btn.click( | |
| fn=process_prompt, | |
| inputs=[iimg, prompt], | |
| outputs=[oimg, dlbt], | |
| ) | |
| examples = [ | |
| [ | |
| "examples/potted-plant.jpg", | |
| "potted plant", | |
| ], | |
| [ | |
| "examples/chair.jpg", | |
| "chair", | |
| ], | |
| [ | |
| "examples/black-lamp.jpg", | |
| "black lamp", | |
| ], | |
| ] | |
| ex = gr.Examples( | |
| examples=examples, | |
| inputs=[iimg, prompt], | |
| outputs=[oimg, dlbt], | |
| fn=process_prompt, | |
| cache_examples=True, | |
| cache_mode="eager", | |
| ) | |
| with gr.Tab("By bounding box", id="tab_bb"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| annotator = image_annotator( | |
| image_type="pil", | |
| disable_edit_boxes=True, | |
| show_download_button=False, | |
| show_share_button=False, | |
| single_box=True, | |
| label="Input", | |
| ) | |
| btn = gr.ClearButton(value="Cut Out Object", interactive=False) | |
| with gr.Column(): | |
| oimg = gr.ImageSlider(label="Before / After", max_height=1500, show_fullscreen_button=False) | |
| dlbt = gr.DownloadButton("Download Cutout", interactive=False) | |
| btn.add(oimg) | |
| annotator.change( | |
| fn=on_change_bbox, | |
| inputs=[annotator], | |
| outputs=[btn], | |
| ) | |
| btn.click( | |
| fn=process_bbox, | |
| inputs=[annotator], | |
| outputs=[oimg, dlbt], | |
| ) | |
| examples = [ | |
| { | |
| "image": "examples/potted-plant.jpg", | |
| "boxes": [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}], | |
| }, | |
| { | |
| "image": "examples/chair.jpg", | |
| "boxes": [{"xmin": 98, "ymin": 330, "xmax": 973, "ymax": 1468}], | |
| }, | |
| { | |
| "image": "examples/black-lamp.jpg", | |
| "boxes": [{"xmin": 88, "ymin": 148, "xmax": 700, "ymax": 1414}], | |
| }, | |
| ] | |
| ex = gr.Examples( | |
| examples=examples, | |
| inputs=[annotator], | |
| outputs=[oimg, dlbt], | |
| fn=process_bbox, | |
| cache_examples=True, | |
| cache_mode="eager", | |
| ) | |
| demo.launch(share=False, ssr_mode=False) | |