Update app.py
Browse files
app.py
CHANGED
|
@@ -2,256 +2,48 @@ import streamlit as st
|
|
| 2 |
import torch
|
| 3 |
import open_clip
|
| 4 |
from PIL import Image
|
| 5 |
-
import os
|
| 6 |
from classifier import few_shot_fault_classification
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
)
|
| 14 |
|
| 15 |
-
|
| 16 |
-
if 'nominal_images' not in st.session_state:
|
| 17 |
-
st.session_state.nominal_images = []
|
| 18 |
-
st.session_state.nominal_descriptions = []
|
| 19 |
-
st.session_state.nominal_filenames = []
|
| 20 |
-
|
| 21 |
-
if 'defective_images' not in st.session_state:
|
| 22 |
-
st.session_state.defective_images = []
|
| 23 |
-
st.session_state.defective_descriptions = []
|
| 24 |
-
st.session_state.defective_filenames = []
|
| 25 |
-
|
| 26 |
-
if 'test_results' not in st.session_state:
|
| 27 |
-
st.session_state.test_results = []
|
| 28 |
|
| 29 |
-
|
| 30 |
-
st.session_state.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 31 |
-
# Load model
|
| 32 |
-
with st.spinner("Loading CLIP model..."):
|
| 33 |
-
model, _, preprocess = open_clip.create_model_and_transforms('RN50', pretrained='openai')
|
| 34 |
-
model = model.to(st.session_state.device)
|
| 35 |
-
model.eval()
|
| 36 |
-
st.session_state.model = model
|
| 37 |
-
st.session_state.preprocess = preprocess
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
return image
|
| 45 |
-
return None
|
| 46 |
|
| 47 |
-
|
| 48 |
-
if not images:
|
| 49 |
-
return
|
| 50 |
-
|
| 51 |
-
rows = (len(images) + columns - 1) // columns
|
| 52 |
-
|
| 53 |
-
for i in range(rows):
|
| 54 |
-
cols = st.columns(columns)
|
| 55 |
-
for j in range(columns):
|
| 56 |
-
idx = i * columns + j
|
| 57 |
-
if idx < len(images):
|
| 58 |
-
with cols[j]:
|
| 59 |
-
st.image(images[idx], caption=captions[idx], use_column_width=True)
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
tab1, tab2, tab3 = st.tabs(["📥 Upload Reference Images", "🔍 Test Classification", "📊 Results"])
|
| 67 |
-
|
| 68 |
-
with tab1:
|
| 69 |
-
st.header("Upload Reference Images")
|
| 70 |
-
|
| 71 |
-
# Create two columns for nominal and defective images
|
| 72 |
-
col1, col2 = st.columns(2)
|
| 73 |
-
|
| 74 |
-
with col1:
|
| 75 |
-
st.subheader("Good Parts (Nominal)")
|
| 76 |
-
|
| 77 |
-
# Input for nominal description
|
| 78 |
-
nominal_desc = st.text_input("Nominal Description",
|
| 79 |
-
value="Good part without defects")
|
| 80 |
-
|
| 81 |
-
# File uploader for nominal images
|
| 82 |
-
nominal_files = st.file_uploader("Upload images of good parts (10 recommended)",
|
| 83 |
-
type=["jpg", "jpeg", "png"],
|
| 84 |
-
accept_multiple_files=True,
|
| 85 |
-
key="nominal_upload")
|
| 86 |
-
|
| 87 |
-
if nominal_files and st.button("Add Nominal Images"):
|
| 88 |
-
for file in nominal_files:
|
| 89 |
-
img = process_uploaded_image(file)
|
| 90 |
-
if img:
|
| 91 |
-
# Preprocess the image for the model
|
| 92 |
-
preprocessed_img = st.session_state.preprocess(img).unsqueeze(0)
|
| 93 |
-
st.session_state.nominal_images.append(preprocessed_img)
|
| 94 |
-
st.session_state.nominal_descriptions.append(nominal_desc)
|
| 95 |
-
st.session_state.nominal_filenames.append(file.name)
|
| 96 |
-
|
| 97 |
-
st.success(f"Added {len(nominal_files)} nominal images!")
|
| 98 |
-
|
| 99 |
-
# Display current nominal image count
|
| 100 |
-
st.write(f"Current nominal images: {len(st.session_state.nominal_images)}")
|
| 101 |
-
|
| 102 |
-
# Display nominal images in a grid if we have any
|
| 103 |
-
if st.session_state.nominal_images and st.session_state.nominal_filenames:
|
| 104 |
-
st.subheader("Current Nominal Images")
|
| 105 |
-
# We'll display the filenames instead of the actual tensor images
|
| 106 |
-
display_placeholders = [f"Image {i+1}" for i in range(len(st.session_state.nominal_filenames))]
|
| 107 |
-
st.write(", ".join(st.session_state.nominal_filenames))
|
| 108 |
-
|
| 109 |
-
if st.button("Clear Nominal Images"):
|
| 110 |
-
st.session_state.nominal_images = []
|
| 111 |
-
st.session_state.nominal_descriptions = []
|
| 112 |
-
st.session_state.nominal_filenames = []
|
| 113 |
-
st.success("Cleared all nominal images!")
|
| 114 |
-
|
| 115 |
-
with col2:
|
| 116 |
-
st.subheader("Defective Parts")
|
| 117 |
-
|
| 118 |
-
# Input for defective description
|
| 119 |
-
defective_desc = st.text_input("Defective Description",
|
| 120 |
-
value="Part with visible defects")
|
| 121 |
-
|
| 122 |
-
# File uploader for defective images
|
| 123 |
-
defective_files = st.file_uploader("Upload images of defective parts (10 recommended)",
|
| 124 |
-
type=["jpg", "jpeg", "png"],
|
| 125 |
-
accept_multiple_files=True,
|
| 126 |
-
key="defective_upload")
|
| 127 |
-
|
| 128 |
-
if defective_files and st.button("Add Defective Images"):
|
| 129 |
-
for file in defective_files:
|
| 130 |
-
img = process_uploaded_image(file)
|
| 131 |
-
if img:
|
| 132 |
-
# Preprocess the image for the model
|
| 133 |
-
preprocessed_img = st.session_state.preprocess(img).unsqueeze(0)
|
| 134 |
-
st.session_state.defective_images.append(preprocessed_img)
|
| 135 |
-
st.session_state.defective_descriptions.append(defective_desc)
|
| 136 |
-
st.session_state.defective_filenames.append(file.name)
|
| 137 |
-
|
| 138 |
-
st.success(f"Added {len(defective_files)} defective images!")
|
| 139 |
-
|
| 140 |
-
# Display current defective image count
|
| 141 |
-
st.write(f"Current defective images: {len(st.session_state.defective_images)}")
|
| 142 |
-
|
| 143 |
-
# Display defective images in a grid if we have any
|
| 144 |
-
if st.session_state.defective_images and st.session_state.defective_filenames:
|
| 145 |
-
st.subheader("Current Defective Images")
|
| 146 |
-
# We'll display the filenames instead of the actual tensor images
|
| 147 |
-
st.write(", ".join(st.session_state.defective_filenames))
|
| 148 |
-
|
| 149 |
-
if st.button("Clear Defective Images"):
|
| 150 |
-
st.session_state.defective_images = []
|
| 151 |
-
st.session_state.defective_descriptions = []
|
| 152 |
-
st.session_state.defective_filenames = []
|
| 153 |
-
st.success("Cleared all defective images!")
|
| 154 |
-
|
| 155 |
-
with tab2:
|
| 156 |
-
st.header("Test Image Classification")
|
| 157 |
-
|
| 158 |
-
# Check if we have enough reference images
|
| 159 |
-
if len(st.session_state.nominal_images) == 0 or len(st.session_state.defective_images) == 0:
|
| 160 |
-
st.warning("You need to upload at least one nominal image and one defective image before testing.")
|
| 161 |
-
else:
|
| 162 |
-
st.write("Upload a test image to classify it as nominal or defective.")
|
| 163 |
-
|
| 164 |
-
# File uploader for test image
|
| 165 |
-
test_files = st.file_uploader("Upload test images",
|
| 166 |
-
type=["jpg", "jpeg", "png"],
|
| 167 |
-
accept_multiple_files=True,
|
| 168 |
-
key="test_upload")
|
| 169 |
-
|
| 170 |
-
if test_files:
|
| 171 |
-
test_images = []
|
| 172 |
-
test_image_displays = []
|
| 173 |
-
test_filenames = []
|
| 174 |
-
|
| 175 |
-
for file in test_files:
|
| 176 |
-
img = process_uploaded_image(file)
|
| 177 |
-
if img:
|
| 178 |
-
test_image_displays.append(img)
|
| 179 |
-
# Preprocess the image for the model
|
| 180 |
-
preprocessed_img = st.session_state.preprocess(img).unsqueeze(0)
|
| 181 |
-
test_images.append(preprocessed_img.squeeze(0))
|
| 182 |
-
test_filenames.append(file.name)
|
| 183 |
-
|
| 184 |
-
# Display the test images
|
| 185 |
-
if test_image_displays:
|
| 186 |
-
display_image_grid(
|
| 187 |
-
test_image_displays,
|
| 188 |
-
[f"Test: {name}" for name in test_filenames]
|
| 189 |
-
)
|
| 190 |
-
|
| 191 |
-
if st.button("Classify Images"):
|
| 192 |
-
with st.spinner("Classifying images..."):
|
| 193 |
-
# Create output directory
|
| 194 |
-
os.makedirs("./results", exist_ok=True)
|
| 195 |
-
|
| 196 |
-
# Run classification
|
| 197 |
-
results = few_shot_fault_classification(
|
| 198 |
-
model=st.session_state.model,
|
| 199 |
-
test_images=test_images,
|
| 200 |
-
test_image_filenames=test_filenames,
|
| 201 |
-
nominal_images=[img.squeeze(0) for img in st.session_state.nominal_images],
|
| 202 |
-
nominal_descriptions=st.session_state.nominal_descriptions,
|
| 203 |
-
defective_images=[img.squeeze(0) for img in st.session_state.defective_images],
|
| 204 |
-
defective_descriptions=st.session_state.defective_descriptions,
|
| 205 |
-
num_few_shot_nominal_imgs=len(st.session_state.nominal_images),
|
| 206 |
-
device=st.session_state.device,
|
| 207 |
-
file_path="./results",
|
| 208 |
-
file_name="classification_results.csv"
|
| 209 |
-
)
|
| 210 |
-
|
| 211 |
-
for i, result in enumerate(results):
|
| 212 |
-
st.session_state.test_results.append({
|
| 213 |
-
"image": test_image_displays[i],
|
| 214 |
-
"filename": test_filenames[i],
|
| 215 |
-
**result
|
| 216 |
-
})
|
| 217 |
-
|
| 218 |
-
# Display classification results
|
| 219 |
-
for result in results:
|
| 220 |
-
classification = result["classification_result"]
|
| 221 |
-
color = "green" if classification == "Nominal" else "red"
|
| 222 |
-
|
| 223 |
-
st.markdown(f"### {result['image_name']}: <span style='color:{color}'>{classification}</span>", unsafe_allow_html=True)
|
| 224 |
-
|
| 225 |
-
# Display probabilities
|
| 226 |
-
col1, col2 = st.columns(2)
|
| 227 |
-
with col1:
|
| 228 |
-
st.metric("Good Part Probability", f"{result['non_defect_prob']:.3f}")
|
| 229 |
-
with col2:
|
| 230 |
-
st.metric("Defective Part Probability", f"{result['defect_prob']:.3f}")
|
| 231 |
-
|
| 232 |
-
with tab3:
|
| 233 |
-
st.header("Classification Results")
|
| 234 |
-
|
| 235 |
-
if not st.session_state.test_results:
|
| 236 |
-
st.info("No classification results yet. Test some images in the 'Test Classification' tab.")
|
| 237 |
-
else:
|
| 238 |
-
st.write(f"Total images classified: {len(st.session_state.test_results)}")
|
| 239 |
-
|
| 240 |
-
# Display results in a table
|
| 241 |
-
results_df = [{
|
| 242 |
-
"Filename": r["filename"],
|
| 243 |
-
"Classification": r["classification_result"],
|
| 244 |
-
"Good Prob": f"{r['non_defect_prob']:.3f}",
|
| 245 |
-
"Defect Prob": f"{r['defect_prob']:.3f}",
|
| 246 |
-
"Time": r["datetime_of_operation"].split('T')[0]
|
| 247 |
-
} for r in st.session_state.test_results]
|
| 248 |
-
|
| 249 |
-
st.table(results_df)
|
| 250 |
-
|
| 251 |
-
# Option to clear results
|
| 252 |
-
if st.button("Clear Results"):
|
| 253 |
-
st.session_state.test_results = []
|
| 254 |
-
st.success("Classification results cleared!")
|
| 255 |
|
| 256 |
-
|
| 257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
import open_clip
|
| 4 |
from PIL import Image
|
|
|
|
| 5 |
from classifier import few_shot_fault_classification
|
| 6 |
|
| 7 |
+
# Load lightweight CLIP model
|
| 8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
+
model, _, preprocess = open_clip.create_model_and_transforms('RN50', pretrained='openai')
|
| 10 |
+
model = model.to(device)
|
| 11 |
+
model.eval()
|
|
|
|
| 12 |
|
| 13 |
+
st.title("🛠️ Few-Shot Fault Detection (Industrial Quality Control)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
st.markdown("Upload **10 Nominal Images**, **10 Defective Images**, and one or more **Test Images** to classify.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
col1, col2 = st.columns(2)
|
| 18 |
+
with col1:
|
| 19 |
+
nominal_files = st.file_uploader("Upload Nominal Images", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
|
| 20 |
+
with col2:
|
| 21 |
+
defective_files = st.file_uploader("Upload Defective Images", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
test_files = st.file_uploader("Upload Test Images", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
if st.button("Classify Test Images"):
|
| 26 |
+
if len(nominal_files) < 1 or len(defective_files) < 1 or len(test_files) < 1:
|
| 27 |
+
st.warning("Please upload at least 1 image in each category.")
|
| 28 |
+
else:
|
| 29 |
+
st.info("Running classification...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
nominal_imgs = [preprocess(Image.open(f).convert("RGB")).to(device) for f in nominal_files]
|
| 32 |
+
defective_imgs = [preprocess(Image.open(f).convert("RGB")).to(device) for f in defective_files]
|
| 33 |
+
test_imgs = [preprocess(Image.open(f).convert("RGB")).to(device) for f in test_files]
|
| 34 |
+
|
| 35 |
+
results = few_shot_fault_classification(
|
| 36 |
+
model=model,
|
| 37 |
+
test_images=test_imgs,
|
| 38 |
+
test_image_filenames=[f.name for f in test_files],
|
| 39 |
+
nominal_images=nominal_imgs,
|
| 40 |
+
nominal_descriptions=[f.name for f in nominal_files],
|
| 41 |
+
defective_images=defective_imgs,
|
| 42 |
+
defective_descriptions=[f.name for f in defective_files],
|
| 43 |
+
num_few_shot_nominal_imgs=len(nominal_files),
|
| 44 |
+
device=device
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
for res in results:
|
| 48 |
+
st.write(f"**{res['image_path']}** ➜ {res['classification_result']} "
|
| 49 |
+
f"(Nominal: {res['non_defect_prob']}, Defective: {res['defect_prob']})")
|