Spaces:
Paused
Paused
File size: 13,816 Bytes
ef821d9 cd68afd ef821d9 cd68afd ef821d9 cd68afd ef821d9 cd68afd ef821d9 01c0ebb ef821d9 01c0ebb ef821d9 cd68afd ef821d9 cd68afd ef821d9 01c0ebb ef821d9 01c0ebb ef821d9 01c0ebb ef821d9 01c0ebb ef821d9 01c0ebb ef821d9 01c0ebb ef821d9 01c0ebb ef821d9 01c0ebb ef821d9 01c0ebb ef821d9 01c0ebb ef821d9 01c0ebb ef821d9 01c0ebb ef821d9 01c0ebb ef821d9 01c0ebb ef821d9 01c0ebb ef821d9 cd68afd ef821d9 01c0ebb ef821d9 01c0ebb ef821d9 01c0ebb ef821d9 cd68afd ef821d9 cd68afd ef821d9 01c0ebb ef821d9 01c0ebb cd68afd ef821d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
"""
Graph-based RAG using NetworkX.
Updated to match the common query signature used by other methods.
"""
import numpy as np
import logging
from typing import Tuple, List, Optional
from openai import OpenAI
import networkx as nx
from sklearn.metrics.pairwise import cosine_similarity
from config import *
from utils import classify_image
logger = logging.getLogger(__name__)
# Initialize OpenAI client
client = OpenAI(api_key=OPENAI_API_KEY)
# Global variables for lazy loading
_graph = None
_enodes = None
_embeddings = None
def _load_graph():
"""Lazy load graph database."""
global _graph, _enodes, _embeddings
if _graph is None:
try:
if GRAPH_FILE.exists():
logger.info("Loading graph database...")
_graph = nx.read_gml(str(GRAPH_FILE))
_enodes = list(_graph.nodes)
# Convert embeddings from lists back to numpy arrays
embeddings_list = []
for n in _enodes:
embedding = _graph.nodes[n]['embedding']
if isinstance(embedding, list):
embeddings_list.append(np.array(embedding))
else:
embeddings_list.append(embedding)
_embeddings = np.array(embeddings_list)
logger.info(f"✓ Loaded graph with {len(_enodes)} nodes")
else:
logger.warning("Graph database not found. Run preprocess.py first.")
_graph = nx.Graph()
_enodes = []
_embeddings = np.array([])
except Exception as e:
logger.error(f"Error loading graph: {e}")
_graph = nx.Graph()
_enodes = []
_embeddings = np.array([])
def query(question: str, image_path: Optional[str] = None, top_k: int = DEFAULT_TOP_K) -> Tuple[str, List[dict]]:
"""
Query using graph-based retrieval.
Args:
question: User's question
image_path: Optional path to an image (for multimodal queries)
top_k: Number of relevant chunks to retrieve
Returns:
Tuple of (answer, citations)
"""
# Load graph if not already loaded
_load_graph()
if len(_enodes) == 0:
return "Graph database is empty. Please run preprocess.py first.", []
# Embed question using OpenAI
emb_resp = client.embeddings.create(
model=OPENAI_EMBEDDING_MODEL,
input=question
)
q_vec = np.array(emb_resp.data[0].embedding)
# Compute cosine similarities
sims = cosine_similarity([q_vec], _embeddings)[0]
idxs = sims.argsort()[::-1][:top_k]
# Collect chunk-level info
chunks = []
citations = []
sources_seen = set()
for rank, i in enumerate(idxs, start=1):
node = _enodes[i]
node_data = _graph.nodes[node]
text = node_data['text']
# Extract header from text
header = text.split('\n', 1)[0].lstrip('#').strip()
score = sims[i]
# Extract citation format - get source from metadata or node_data
metadata = node_data.get('metadata', {})
source = metadata.get('source') or node_data.get('source')
if not source:
continue
if 'url' in metadata: # HTML source
citation_ref = metadata['url']
cite_type = 'html'
elif 'path' in metadata: # PDF source
citation_ref = metadata['path']
cite_type = 'pdf'
elif 'url' in node_data: # Legacy format
citation_ref = node_data['url']
cite_type = 'html'
elif 'path' in node_data: # Legacy format
citation_ref = node_data['path']
cite_type = 'pdf'
else:
citation_ref = source
cite_type = 'unknown'
chunks.append({
'header': header,
'score': score,
'text': text,
'citation': citation_ref
})
# Add unique citation
if source not in sources_seen:
citation_entry = {
'source': source,
'type': cite_type,
'relevance_score': round(float(score), 3)
}
if cite_type == 'html':
citation_entry['url'] = citation_ref
elif cite_type == 'pdf':
citation_entry['path'] = citation_ref
citations.append(citation_entry)
sources_seen.add(source)
# Handle image if provided
image_context = ""
if image_path:
try:
# Classify the image
classification = classify_image(image_path)
image_context = f"\n\n[Image Context: The provided image appears to be a {classification}.]"
# Optionally, find related nodes in graph based on image classification
# This would require storing image-related metadata in the graph
except Exception as e:
print(f"Error processing image: {e}")
# Assemble context for prompt
context = "\n\n---\n\n".join([c['text'] for c in chunks])
prompt = f"""Use the following context to answer the question:
{context}{image_context}
Question: {question}
Please provide a comprehensive answer based on the context provided. Cite specific sources when providing information."""
# For GPT-5, temperature must be default (1.0)
chat_resp = client.chat.completions.create(
model=OPENAI_CHAT_MODEL,
messages=[
{"role": "system", "content": "You are a helpful assistant for manufacturing equipment safety. Always provide accurate information based on the given context."},
{"role": "user", "content": prompt}
],
max_completion_tokens=DEFAULT_MAX_TOKENS
)
answer = chat_resp.choices[0].message.content
return answer, citations
def query_with_graph_traversal(question: str, top_k: int = 5, max_hops: int = 2) -> Tuple[str, List[dict]]:
"""
Enhanced graph query that can traverse edges to find related information.
Args:
question: User's question
top_k: Number of initial nodes to retrieve
max_hops: Maximum graph traversal depth
Returns:
Tuple of (answer, citations)
"""
# Load graph if not already loaded
_load_graph()
if len(_enodes) == 0:
return "Graph database is empty. Please run preprocess.py first.", []
# Get initial nodes using standard query
initial_answer, initial_citations = query(question, top_k=top_k)
# For a more sophisticated implementation, you would:
# 1. Add edges between related nodes during preprocessing
# 2. Traverse from initial nodes to find related content
# 3. Score the related nodes based on path distance and relevance
# For now, return the standard query results
return initial_answer, initial_citations
def query_subgraph(question: str, source_filter: str = None, top_k: int = 5) -> Tuple[str, List[dict]]:
"""
Query a specific subgraph filtered by source.
Args:
question: User's question
source_filter: Filter nodes by source (e.g., specific PDF name)
top_k: Number of relevant chunks to retrieve
Returns:
Tuple of (answer, citations)
"""
# Load graph if not already loaded
_load_graph()
# Filter nodes if source specified
if source_filter:
filtered_nodes = []
for n in _enodes:
node_data = _graph.nodes[n]
metadata = node_data.get('metadata', {})
source = metadata.get('source') or node_data.get('source', '')
source_from_meta = metadata.get('source', '')
# Check both direct source and metadata source
if (source_filter.lower() in source.lower() or
source_filter.lower() in source_from_meta.lower()):
filtered_nodes.append(n)
if not filtered_nodes:
return f"No nodes found for source: {source_filter}", []
else:
filtered_nodes = _enodes
# Get embeddings for filtered nodes
filtered_embeddings = np.array([_graph.nodes[n]['embedding'] for n in filtered_nodes])
# Embed question
emb_resp = client.embeddings.create(
model=OPENAI_EMBEDDING_MODEL,
input=question
)
q_vec = np.array(emb_resp.data[0].embedding)
# Compute similarities
sims = cosine_similarity([q_vec], filtered_embeddings)[0]
idxs = sims.argsort()[::-1][:top_k]
# Collect results
chunks = []
citations = []
sources_seen = set()
for i in idxs:
if i < len(filtered_nodes):
node = filtered_nodes[i]
node_data = _graph.nodes[node]
chunks.append(node_data['text'])
# Skip if source information missing
metadata = node_data.get('metadata', {})
source = metadata.get('source') or node_data.get('source')
if not source:
continue
if source not in sources_seen:
citation = {
'source': source,
'type': 'pdf' if ('path' in metadata or 'path' in node_data) else 'html',
'relevance_score': round(float(sims[i]), 3)
}
# Check metadata first, then node_data for legacy support
if 'url' in metadata:
citation['url'] = metadata['url']
elif 'path' in metadata:
citation['path'] = metadata['path']
elif 'url' in node_data:
citation['url'] = node_data['url']
elif 'path' in node_data:
citation['path'] = node_data['path']
citations.append(citation)
sources_seen.add(source)
# Build context and generate answer
context = "\n\n---\n\n".join(chunks)
prompt = f"""Answer the following question using the provided context:
Context from {source_filter if source_filter else 'all sources'}:
{context}
Question: {question}
Provide a detailed answer based on the context."""
# For GPT-5, temperature must be default (1.0)
response = client.chat.completions.create(
model=OPENAI_CHAT_MODEL,
messages=[
{"role": "system", "content": "You are an expert on manufacturing safety. Answer based on the provided context."},
{"role": "user", "content": prompt}
],
max_completion_tokens=DEFAULT_MAX_TOKENS
)
answer = response.choices[0].message.content
return answer, citations
# Maintain backward compatibility with original function signature
def query_graph(question: str, top_k: int = 5) -> Tuple[str, List[str], List[tuple]]:
"""
Original query_graph function signature for backward compatibility.
Args:
question: User's question
top_k: Number of relevant chunks to retrieve
Returns:
Tuple of (answer, sources, chunks)
"""
# Call the new query function
answer, citations = query(question, top_k=top_k)
# Convert citations to old format
sources = [c['source'] for c in citations]
# Get chunks in old format (header, score, text, citation)
_load_graph()
if len(_enodes) == 0:
return answer, sources, []
# Regenerate chunks for backward compatibility
emb_resp = client.embeddings.create(
model=OPENAI_EMBEDDING_MODEL,
input=question
)
q_vec = np.array(emb_resp.data[0].embedding)
sims = cosine_similarity([q_vec], _embeddings)[0]
idxs = sims.argsort()[::-1][:top_k]
chunks = []
for i in idxs:
node = _enodes[i]
node_data = _graph.nodes[node]
text = node_data['text']
header = text.split('\n', 1)[0].lstrip('#').strip()
score = sims[i]
# Skip if source information missing
metadata = node_data.get('metadata', {})
source = metadata.get('source') or node_data.get('source')
if not source:
continue
if 'url' in metadata:
citation = metadata['url']
elif 'path' in metadata:
citation = metadata['path']
elif 'url' in node_data:
citation = node_data['url']
elif 'path' in node_data:
citation = node_data['path']
else:
citation = source
chunks.append((header, score, text, citation))
return answer, sources, chunks
if __name__ == "__main__":
# Test the updated graph query
test_questions = [
"What are general machine guarding requirements?",
"How do I perform lockout/tagout procedures?",
"What safety measures are needed for robotic systems?"
]
for q in test_questions:
print(f"\nQuestion: {q}")
answer, citations = query(q)
print(f"Answer: {answer[:200]}...")
print(f"Citations: {[c['source'] for c in citations]}")
print("-" * 50) |