File size: 15,689 Bytes
ef821d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
"""

FastAPI server for OpenAI Realtime API integration with RAG system.

Provides endpoints for session management and RAG tool calls.



Directory structure:

/data/         # Original PDFs, HTML

/embeddings/   # FAISS, Chroma, DPR vector stores

/graph/        # Graph database files

/metadata/     # Image metadata (SQLite or MongoDB)

"""

import json
import logging
import os
import time
from typing import Dict, Any, Optional
from fastapi import FastAPI, HTTPException, Request, Response, status
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from fastapi.exceptions import RequestValidationError
from starlette.exceptions import HTTPException as StarletteHTTPException
from pydantic import BaseModel
import uvicorn
from openai import OpenAI

# Import all query modules
from query_graph import query as graph_query
from query_vanilla import query as vanilla_query
from query_dpr import query as dpr_query
from query_bm25 import query as bm25_query
from query_context import query as context_query
from query_vision import query as vision_query

from config import OPENAI_API_KEY, OPENAI_CHAT_MODEL, OPENAI_REALTIME_MODEL, REALTIME_VOICE, REALTIME_INSTRUCTIONS, DEFAULT_METHOD
from analytics_db import log_query

logger = logging.getLogger(__name__)

# Initialize FastAPI app
app = FastAPI(title="SIGHT Realtime API Server", version="1.0.0")

# CORS middleware for frontend integration
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # In production, restrict to your domain
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@app.middleware("http")
async def log_requests(request: Request, call_next):
    """Log all incoming requests for debugging."""
    logger.info(f"Incoming request: {request.method} {request.url}")
    try:
        response = await call_next(request)
        logger.info(f"Response status: {response.status_code}")
        return response
    except Exception as e:
        logger.error(f"Request processing error: {e}")
        return JSONResponse(
            content={"error": "Internal server error"}, 
            status_code=500
        )

# Exception handlers
@app.exception_handler(RequestValidationError)
async def validation_exception_handler(request: Request, exc: RequestValidationError):
    logger.warning(f"Validation error for {request.url}: {exc}")
    return JSONResponse(
        status_code=status.HTTP_422_UNPROCESSABLE_ENTITY,
        content={"error": "Invalid request format", "details": str(exc)}
    )

@app.exception_handler(StarletteHTTPException)
async def http_exception_handler(request: Request, exc: StarletteHTTPException):
    logger.warning(f"HTTP error for {request.url}: {exc.status_code} - {exc.detail}")
    return JSONResponse(
        status_code=exc.status_code,
        content={"error": exc.detail}
    )

@app.exception_handler(Exception)
async def general_exception_handler(request: Request, exc: Exception):
    logger.error(f"Unhandled error for {request.url}: {exc}")
    return JSONResponse(
        status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
        content={"error": "Internal server error"}
    )

# Initialize OpenAI client
client = OpenAI(api_key=OPENAI_API_KEY)

# Query method dispatch
QUERY_DISPATCH = {
    'graph': graph_query,
    'vanilla': vanilla_query,
    'dpr': dpr_query,
    'bm25': bm25_query,
    'context': context_query,
    'vision': vision_query
}

# Use configuration from config.py with environment variable overrides
REALTIME_MODEL = os.getenv("REALTIME_MODEL", OPENAI_REALTIME_MODEL)
VOICE = os.getenv("REALTIME_VOICE", REALTIME_VOICE)
INSTRUCTIONS = os.getenv("REALTIME_INSTRUCTIONS", REALTIME_INSTRUCTIONS)

# Pydantic models for request/response
class SessionRequest(BaseModel):
    """Request model for creating ephemeral sessions."""
    model: Optional[str] = "gpt-4o-realtime-preview"
    instructions: Optional[str] = None
    voice: Optional[str] = None

class RAGRequest(BaseModel):
    """Request model for RAG queries."""
    query: str
    method: str = "graph"
    top_k: int = 5
    image_path: Optional[str] = None

class RAGResponse(BaseModel):
    """Response model for RAG queries."""
    answer: str
    citations: list
    method: str
    citations_html: Optional[str] = None

@app.post("/session")
async def create_ephemeral_session(request: SessionRequest) -> JSONResponse:
    """

    Create an ephemeral session token for OpenAI Realtime API.

    This token will be used by the frontend WebRTC client.

    """
    try:
        logger.info(f"Creating ephemeral session with model: {request.model or REALTIME_MODEL}")
        
        # Create ephemeral token using direct HTTP call to OpenAI API
        # Since the Python SDK doesn't support realtime sessions yet
        import requests
        
        session_data = {
            "model": request.model or REALTIME_MODEL,
            "voice": request.voice or VOICE,
            "modalities": ["audio", "text"],
            "instructions": request.instructions or INSTRUCTIONS,
        }
        
        headers = {
            "Authorization": f"Bearer {OPENAI_API_KEY}",
            "Content-Type": "application/json"
        }
        
        # Make direct HTTP request to OpenAI's realtime sessions endpoint
        response = requests.post(
            "https://api.openai.com/v1/realtime/sessions",
            json=session_data,
            headers=headers,
            timeout=30
        )
        
        if response.status_code == 200:
            session_result = response.json()
            
            response_data = {
                "client_secret": session_result.get("client_secret", {}).get("value") or session_result.get("client_secret"),
                "model": request.model or REALTIME_MODEL,
                "session_id": session_result.get("id")
            }
            
            logger.info("Ephemeral session created successfully")
            return JSONResponse(content=response_data, status_code=200)
        else:
            logger.error(f"OpenAI API error: {response.status_code} - {response.text}")
            return JSONResponse(
                content={"error": f"OpenAI API error: {response.status_code} - {response.text}"}, 
                status_code=response.status_code
            )
            
    except requests.exceptions.RequestException as e:
        logger.error(f"Network error creating ephemeral session: {e}")
        return JSONResponse(
            content={"error": f"Network error: {str(e)}"}, 
            status_code=500
        )
    except Exception as e:
        logger.error(f"Error creating ephemeral session: {e}")
        return JSONResponse(
            content={"error": f"Session creation failed: {str(e)}"}, 
            status_code=500
        )

@app.post("/rag", response_model=RAGResponse)
async def rag_query(request: RAGRequest) -> RAGResponse:
    """

    Handle RAG queries from the realtime interface.

    This endpoint is called by the JavaScript frontend when the model

    requests the ask_rag function.

    """
    try:
        logger.info(f"RAG query: {request.query} using method: {request.method}")
        
        # Validate and default method if needed
        method = request.method
        if method not in QUERY_DISPATCH:
            logger.warning(f"Invalid method '{method}', using default '{DEFAULT_METHOD}'")
            method = DEFAULT_METHOD
        
        # Get the appropriate query function
        query_func = QUERY_DISPATCH[method]
        
        # Execute the query 
        start_time = time.time()
        
        answer, citations = query_func(
            question=request.query, 
            image_path=request.image_path, 
            top_k=request.top_k
        )
        response_time = (time.time() - start_time) * 1000  # Convert to ms
        
        # Format citations for HTML display (optional)
        citations_html = format_citations_html(citations, method)
        
        # Log to analytics database (mark as voice interaction)
        try:
            # Generate unique session ID for each voice interaction
            import uuid
            voice_session_id = f"voice_{uuid.uuid4().hex[:8]}"
            
            log_query(
                user_query=request.query,
                method=method,
                answer=answer,
                citations=citations,
                response_time=response_time,
                image_path=request.image_path,
                top_k=request.top_k,
                session_id=voice_session_id,
                additional_settings={'voice_interaction': True, 'interaction_type': 'speech_to_speech'}
            )
            logger.info(f"Voice interaction logged: {request.query[:50]}...")
        except Exception as log_error:
            logger.error(f"Failed to log voice query: {log_error}")
        
        logger.info(f"RAG query completed: {len(answer)} chars, {len(citations)} citations")
        
        return RAGResponse(
            answer=answer,
            citations=citations,
            method=method,
            citations_html=citations_html
        )
        
    except Exception as e:
        logger.error(f"Error processing RAG query: {e}")
        raise HTTPException(status_code=500, detail=f"RAG query failed: {str(e)}")

def format_citations_html(citations: list, method: str) -> str:
    """Format citations as HTML for display."""
    if not citations:
        return "<p><em>No citations available</em></p>"
    
    html_parts = ["<div style='margin-top: 1em;'><strong>Sources:</strong><ul>"]
    
    for citation in citations:
        if isinstance(citation, dict) and 'source' in citation:
            source = citation['source']
            cite_type = citation.get('type', 'unknown')
            
            # Build citation text based on type
            if cite_type == 'pdf':
                cite_text = f"πŸ“„ {source} (PDF)"
            elif cite_type == 'html':
                url = citation.get('url', '')
                if url:
                    cite_text = f"🌐 <a href='{url}' target='_blank'>{source}</a> (Web)"
                else:
                    cite_text = f"🌐 {source} (Web)"
            elif cite_type == 'image':
                page = citation.get('page', 'N/A')
                cite_text = f"πŸ–ΌοΈ {source} (Image, page {page})"
            else:
                cite_text = f"πŸ“š {source}"
            
            # Add scores if available
            scores = []
            if 'relevance_score' in citation:
                scores.append(f"relevance: {citation['relevance_score']:.3f}")
            if 'score' in citation:
                scores.append(f"score: {citation['score']:.3f}")
            
            if scores:
                cite_text += f" <small>({', '.join(scores)})</small>"
            
            html_parts.append(f"<li>{cite_text}</li>")
        elif isinstance(citation, (list, tuple)) and len(citation) >= 4:
            # Handle legacy citation format (header, score, text, source)
            header, score, text, source = citation[:4]
            cite_text = f"πŸ“š {source} <small>(score: {score:.3f})</small>"
            html_parts.append(f"<li>{cite_text}</li>")
    
    html_parts.append("</ul></div>")
    return "".join(html_parts)

@app.get("/")
async def root():
    """Root endpoint to prevent invalid HTTP request warnings."""
    return {
        "service": "SIGHT Realtime API Server",
        "version": "1.0.0",
        "status": "running",
        "endpoints": {
            "session": "POST /session - Create realtime session",
            "rag": "POST /rag - Query RAG system", 
            "health": "GET /health - Health check",
            "methods": "GET /methods - List available RAG methods"
        }
    }

@app.get("/health")
async def health_check():
    """Health check endpoint."""
    return {"status": "healthy", "service": "SIGHT Realtime API Server"}

@app.get("/methods")
async def list_methods():
    """List available RAG methods."""
    return {
        "methods": list(QUERY_DISPATCH.keys()),
        "descriptions": {
            'graph': "Graph-based RAG using NetworkX with relationship-aware retrieval",
            'vanilla': "Standard vector search with FAISS and OpenAI embeddings",
            'dpr': "Dense Passage Retrieval with bi-encoder and cross-encoder re-ranking",
            'bm25': "BM25 keyword search with neural re-ranking for exact term matching",
            'context': "Context stuffing with full document loading and heuristic selection",
            'vision': "Vision-based search using GPT-5 Vision for image analysis"
        }
    }

@app.options("/{full_path:path}")
async def options_handler(request: Request, response: Response):
    """Handle CORS preflight requests."""
    response.headers["Access-Control-Allow-Origin"] = "*"
    response.headers["Access-Control-Allow-Methods"] = "GET, POST, PUT, DELETE, OPTIONS"
    response.headers["Access-Control-Allow-Headers"] = "*"
    return response

if __name__ == "__main__":
    import argparse
    
    # Parse command line arguments
    parser = argparse.ArgumentParser(description="SIGHT Realtime API Server")
    parser.add_argument("--https", action="store_true", help="Enable HTTPS with self-signed certificate")
    parser.add_argument("--port", type=int, default=5050, help="Port to run the server on")
    parser.add_argument("--host", default="0.0.0.0", help="Host to bind the server to")
    args = parser.parse_args()
    
    # Configure logging
    logging.basicConfig(
        level=logging.INFO,
        format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
    )
    
    # Suppress uvicorn access logs for cleaner output
    uvicorn_logger = logging.getLogger("uvicorn.access")
    uvicorn_logger.setLevel(logging.WARNING)
    
    # Prepare uvicorn configuration
    uvicorn_config = {
        "app": "realtime_server:app",
        "host": args.host,
        "port": args.port,
        "reload": True,
        "log_level": "warning",
        "access_log": False
    }
    
    # Add SSL configuration if HTTPS is requested
    if args.https:
        logger.info("Starting server with HTTPS (self-signed certificate)")
        logger.warning("⚠️  Self-signed certificate will show security warnings in browser")
        logger.info("For production, use a proper SSL certificate from a CA")
        
        # Note: You would need to generate SSL certificates
        # For development, you can create self-signed certificates:
        # openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days 365 -nodes
        uvicorn_config.update({
            "ssl_keyfile": "key.pem",
            "ssl_certfile": "cert.pem"
        })
        
        print(f"πŸ”’ Starting HTTPS server on https://{args.host}:{args.port}")
        print("πŸ“ To generate self-signed certificates, run:")
        print("   openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days 365 -nodes")
    else:
        print(f"🌐 Starting HTTP server on http://{args.host}:{args.port}")
        print("⚠️  HTTP only works for localhost. Use --https for production deployment.")
    
    # Run the server
    uvicorn.run(**uvicorn_config)