Spaces:
Paused
Paused
File size: 26,134 Bytes
ef821d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 |
"""
Utility functions for the Multi-Method RAG System.
Directory Layout:
/data/ # Original PDFs, HTML
/embeddings/ # FAISS, Chroma, DPR vector stores
/graph/ # Graph database files
/metadata/ # Image metadata (SQLite or MongoDB)
"""
import os
import json
import pickle
import sqlite3
import base64
from pathlib import Path
from typing import List, Dict, Tuple, Optional, Any, Union
from dataclasses import dataclass
import logging
import pymupdf4llm
import pymupdf
import numpy as np
import pandas as pd
from PIL import Image
import requests
from bs4 import BeautifulSoup
# Vector stores and search
import faiss
import chromadb
from rank_bm25 import BM25Okapi
import networkx as nx
# ML models
from openai import OpenAI
from sentence_transformers import SentenceTransformer, CrossEncoder
import torch
# import clip
# Text processing
from sklearn.feature_extraction.text import TfidfVectorizer
import tiktoken
from config import *
logger = logging.getLogger(__name__)
@dataclass
class DocumentChunk:
"""Data structure for document chunks."""
text: str
metadata: Dict[str, Any]
chunk_id: str
embedding: Optional[np.ndarray] = None
@dataclass
class ImageData:
"""Data structure for image metadata."""
image_path: str
image_id: str
classification: Optional[str] = None
embedding: Optional[np.ndarray] = None
metadata: Optional[Dict[str, Any]] = None
class DocumentLoader:
"""Load and extract text from various document formats."""
def __init__(self):
self.client = OpenAI(api_key=OPENAI_API_KEY)
validate_api_key()
def load_pdf_documents(self, pdf_paths: List[Union[str, Path]]) -> List[Dict[str, Any]]:
"""Load text from PDF files using pymupdf4llm."""
documents = []
for pdf_path in pdf_paths:
try:
pdf_path = Path(pdf_path)
logger.info(f"Loading PDF: {pdf_path}")
# Extract text using pymupdf4llm
text = pymupdf4llm.to_markdown(str(pdf_path))
# Extract images if present
images = self._extract_pdf_images(pdf_path)
doc = {
'text': text,
'source': str(pdf_path.name),
'path': str(pdf_path),
'type': 'pdf',
'images': images,
'metadata': {
'file_size': pdf_path.stat().st_size,
'modified': pdf_path.stat().st_mtime
}
}
documents.append(doc)
except Exception as e:
logger.error(f"Error loading PDF {pdf_path}: {e}")
continue
return documents
def _extract_pdf_images(self, pdf_path: Path) -> List[Dict[str, Any]]:
"""Extract images from PDF using pymupdf."""
images = []
try:
doc = pymupdf.open(str(pdf_path))
for page_num in range(len(doc)):
page = doc[page_num]
image_list = page.get_images(full=True)
for img_index, img in enumerate(image_list):
try:
# Extract image
xref = img[0]
pix = pymupdf.Pixmap(doc, xref)
# Skip if pixmap is invalid or has no colorspace
if not pix or pix.colorspace is None:
if pix:
pix = None
continue
# Only process images with valid color channels
if pix.n - pix.alpha < 4: # GRAY or RGB
image_id = f"{pdf_path.stem}_p{page_num}_img{img_index}"
image_path = IMAGES_DIR / f"{image_id}.png"
# Convert to RGB if grayscale or other formats
if pix.n == 1: # Grayscale
rgb_pix = pymupdf.Pixmap(pymupdf.csRGB, pix)
pix = None # Clean up original
pix = rgb_pix
elif pix.n == 4 and pix.alpha == 0: # CMYK
rgb_pix = pymupdf.Pixmap(pymupdf.csRGB, pix)
pix = None # Clean up original
pix = rgb_pix
# Save image
pix.save(str(image_path))
images.append({
'image_id': image_id,
'image_path': str(image_path),
'page': page_num,
'source': str(pdf_path.name)
})
pix = None
except Exception as e:
logger.warning(f"Error extracting image {img_index} from page {page_num}: {e}")
if 'pix' in locals() and pix:
pix = None
continue
doc.close()
except Exception as e:
logger.error(f"Error extracting images from {pdf_path}: {e}")
return images
def load_html_documents(self, html_sources: List[Dict[str, str]]) -> List[Dict[str, Any]]:
"""Load text from HTML sources."""
documents = []
for source in html_sources:
try:
logger.info(f"Loading HTML: {source.get('title', source['url'])}")
# Fetch HTML content
response = requests.get(source['url'], timeout=30)
response.raise_for_status()
# Parse with BeautifulSoup
soup = BeautifulSoup(response.text, 'html.parser')
# Extract text
text = soup.get_text(separator=' ', strip=True)
doc = {
'text': text,
'source': source.get('title', source['url']),
'path': source['url'],
'type': 'html',
'images': [],
'metadata': {
'url': source['url'],
'title': source.get('title', ''),
'year': source.get('year', ''),
'category': source.get('category', ''),
'format': source.get('format', 'HTML')
}
}
documents.append(doc)
except Exception as e:
logger.error(f"Error loading HTML {source['url']}: {e}")
continue
return documents
def load_text_documents(self, data_dir: Path = DATA_DIR) -> List[Dict[str, Any]]:
"""Load all supported document types from data directory."""
documents = []
# Load PDFs
pdf_files = list(data_dir.glob("*.pdf"))
if pdf_files:
documents.extend(self.load_pdf_documents(pdf_files))
# Load HTML sources (from config)
if DEFAULT_HTML_SOURCES:
documents.extend(self.load_html_documents(DEFAULT_HTML_SOURCES))
logger.info(f"Loaded {len(documents)} documents total")
return documents
class TextPreprocessor:
"""Preprocess text for different retrieval methods."""
def __init__(self):
self.encoding = tiktoken.get_encoding("cl100k_base")
def chunk_text_by_tokens(self, text: str, chunk_size: int = CHUNK_SIZE,
overlap: int = CHUNK_OVERLAP) -> List[str]:
"""Split text into chunks by token count."""
tokens = self.encoding.encode(text)
chunks = []
start = 0
while start < len(tokens):
end = start + chunk_size
chunk_tokens = tokens[start:end]
chunk_text = self.encoding.decode(chunk_tokens)
chunks.append(chunk_text)
start = end - overlap
return chunks
def chunk_text_by_sections(self, text: str, method: str = "vanilla") -> List[str]:
"""Split text by sections based on method requirements."""
if method in ["vanilla", "dpr"]:
return self.chunk_text_by_tokens(text)
elif method == "bm25":
# BM25 works better with paragraph-level chunks
paragraphs = [p.strip() for p in text.split('\n\n') if p.strip()]
return paragraphs
elif method == "graph":
# Graph method uses larger sections
return self.chunk_text_by_tokens(text, chunk_size=CHUNK_SIZE*2)
elif method == "context_stuffing":
# Context stuffing uses full documents
return [text]
else:
return self.chunk_text_by_tokens(text)
def preprocess_for_method(self, documents: List[Dict[str, Any]],
method: str) -> List[DocumentChunk]:
"""Preprocess documents for specific retrieval method."""
chunks = []
for doc in documents:
text_chunks = self.chunk_text_by_sections(doc['text'], method)
for i, chunk_text in enumerate(text_chunks):
chunk_id = f"{doc['source']}_{method}_chunk_{i}"
chunk = DocumentChunk(
text=chunk_text,
metadata={
'source': doc['source'],
'path': doc['path'],
'type': doc['type'],
'chunk_index': i,
'method': method,
**doc.get('metadata', {})
},
chunk_id=chunk_id
)
chunks.append(chunk)
logger.info(f"Created {len(chunks)} chunks for method '{method}'")
return chunks
class EmbeddingGenerator:
"""Generate embeddings using various models."""
def __init__(self):
self.openai_client = OpenAI(api_key=OPENAI_API_KEY)
self.sentence_transformer = None
# self.clip_model = None
# self.clip_preprocess = None
def _get_sentence_transformer(self):
"""Lazy loading of sentence transformer."""
if self.sentence_transformer is None:
self.sentence_transformer = SentenceTransformer(SENTENCE_TRANSFORMER_MODEL)
if DEVICE == "cuda":
self.sentence_transformer = self.sentence_transformer.to(DEVICE)
return self.sentence_transformer
# def _get_clip_model(self):
# """Lazy loading of CLIP model."""
# if self.clip_model is None:
# self.clip_model, self.clip_preprocess = clip.load(CLIP_MODEL, device=DEVICE)
# return self.clip_model, self.clip_preprocess
def embed_text_openai(self, texts: List[str]) -> np.ndarray:
"""Generate embeddings using OpenAI API."""
embeddings = []
# Process in batches
for i in range(0, len(texts), EMBEDDING_BATCH_SIZE):
batch = texts[i:i + EMBEDDING_BATCH_SIZE]
try:
response = self.openai_client.embeddings.create(
model=OPENAI_EMBEDDING_MODEL,
input=batch
)
batch_embeddings = [data.embedding for data in response.data]
embeddings.extend(batch_embeddings)
except Exception as e:
logger.error(f"Error generating OpenAI embeddings: {e}")
raise
return np.array(embeddings)
def embed_text_sentence_transformer(self, texts: List[str]) -> np.ndarray:
"""Generate embeddings using sentence transformers."""
model = self._get_sentence_transformer()
try:
embeddings = model.encode(texts, convert_to_numpy=True,
show_progress_bar=True, batch_size=32)
return embeddings
except Exception as e:
logger.error(f"Error generating sentence transformer embeddings: {e}")
raise
def embed_image_clip(self, image_paths: List[str]) -> np.ndarray:
"""Generate image embeddings using CLIP."""
# model, preprocess = self._get_clip_model()
# embeddings = []
# for image_path in image_paths:
# try:
# image = preprocess(Image.open(image_path)).unsqueeze(0).to(DEVICE)
#
# with torch.no_grad():
# image_features = model.encode_image(image)
# image_features /= image_features.norm(dim=-1, keepdim=True)
#
# embeddings.append(image_features.cpu().numpy().flatten())
#
# except Exception as e:
# logger.error(f"Error embedding image {image_path}: {e}")
# continue
# return np.array(embeddings) if embeddings else np.array([])
# Placeholder for CLIP embeddings
logger.warning("CLIP embeddings not implemented - returning dummy embeddings")
return np.random.rand(len(image_paths), 512)
class VectorStoreManager:
"""Manage vector stores for different methods."""
def __init__(self):
self.embedding_generator = EmbeddingGenerator()
def build_faiss_index(self, chunks: List[DocumentChunk], method: str = "vanilla") -> Tuple[Any, List[Dict]]:
"""Build FAISS index for vanilla or DPR method."""
# Generate embeddings
texts = [chunk.text for chunk in chunks]
if method == "vanilla":
embeddings = self.embedding_generator.embed_text_openai(texts)
elif method == "dpr":
embeddings = self.embedding_generator.embed_text_sentence_transformer(texts)
else:
raise ValueError(f"Unsupported method for FAISS: {method}")
# Build FAISS index
dimension = embeddings.shape[1]
index = faiss.IndexFlatIP(dimension) # Inner product for cosine similarity
# Ensure embeddings are float32 and normalize for cosine similarity
embeddings = embeddings.astype(np.float32)
faiss.normalize_L2(embeddings)
index.add(embeddings)
# Store chunk metadata
metadata = []
for i, chunk in enumerate(chunks):
metadata.append({
'chunk_id': chunk.chunk_id,
'text': chunk.text,
'metadata': chunk.metadata,
'embedding': embeddings[i].tolist()
})
logger.info(f"Built FAISS index with {index.ntotal} vectors for method '{method}'")
return index, metadata
def build_chroma_index(self, chunks: List[DocumentChunk], method: str = "vanilla") -> Any:
"""Build Chroma vector database."""
# Initialize Chroma client
chroma_client = chromadb.PersistentClient(path=str(CHROMA_PATH / method))
collection = chroma_client.get_or_create_collection(
name=f"{method}_collection",
metadata={"method": method}
)
# Prepare data for Chroma
texts = [chunk.text for chunk in chunks]
ids = [chunk.chunk_id for chunk in chunks]
metadatas = [chunk.metadata for chunk in chunks]
# Add to collection (Chroma handles embeddings internally)
collection.add(
documents=texts,
ids=ids,
metadatas=metadatas
)
logger.info(f"Built Chroma collection with {collection.count()} documents for method '{method}'")
return collection
def build_bm25_index(self, chunks: List[DocumentChunk]) -> BM25Okapi:
"""Build BM25 index for keyword search."""
# Tokenize texts
tokenized_corpus = []
for chunk in chunks:
tokens = chunk.text.lower().split()
tokenized_corpus.append(tokens)
# Build BM25 index
bm25 = BM25Okapi(tokenized_corpus, k1=BM25_K1, b=BM25_B)
logger.info(f"Built BM25 index with {len(tokenized_corpus)} documents")
return bm25
def build_graph_index(self, chunks: List[DocumentChunk]) -> nx.Graph:
"""Build NetworkX graph for graph-based retrieval."""
# Create graph
G = nx.Graph()
# Generate embeddings for similarity calculation
texts = [chunk.text for chunk in chunks]
embeddings = self.embedding_generator.embed_text_openai(texts)
# Add nodes (convert embeddings to lists for GML serialization)
for i, chunk in enumerate(chunks):
G.add_node(chunk.chunk_id,
text=chunk.text,
metadata=chunk.metadata,
embedding=embeddings[i].tolist()) # Convert to list for serialization
# Add edges based on similarity
threshold = 0.7 # Similarity threshold
for i in range(len(chunks)):
for j in range(i + 1, len(chunks)):
# Calculate cosine similarity
sim = np.dot(embeddings[i], embeddings[j]) / (
np.linalg.norm(embeddings[i]) * np.linalg.norm(embeddings[j])
)
if sim > threshold:
G.add_edge(chunks[i].chunk_id, chunks[j].chunk_id,
weight=float(sim))
logger.info(f"Built graph with {G.number_of_nodes()} nodes and {G.number_of_edges()} edges")
return G
def save_index(self, index: Any, metadata: Any, method: str):
"""Save index and metadata to disk."""
if method == "vanilla":
faiss.write_index(index, str(VANILLA_FAISS_INDEX))
with open(VANILLA_METADATA, 'wb') as f:
pickle.dump(metadata, f)
elif method == "dpr":
faiss.write_index(index, str(DPR_FAISS_INDEX))
with open(DPR_METADATA, 'wb') as f:
pickle.dump(metadata, f)
elif method == "bm25":
with open(BM25_INDEX, 'wb') as f:
pickle.dump({'index': index, 'texts': metadata}, f)
elif method == "context_stuffing":
with open(CONTEXT_DOCS, 'wb') as f:
pickle.dump(metadata, f)
elif method == "graph":
nx.write_gml(index, str(GRAPH_FILE))
logger.info(f"Saved {method} index to disk")
class ImageProcessor:
"""Process and classify images."""
def __init__(self):
self.embedding_generator = EmbeddingGenerator()
self.openai_client = OpenAI(api_key=OPENAI_API_KEY)
self._init_database()
def _init_database(self):
"""Initialize SQLite database for image metadata."""
conn = sqlite3.connect(IMAGES_DB)
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS images (
image_id TEXT PRIMARY KEY,
image_path TEXT NOT NULL,
classification TEXT,
metadata TEXT,
embedding BLOB,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
''')
conn.commit()
conn.close()
def classify_image(self, image_path: str) -> str:
"""Classify image using GPT-5 Vision."""
try:
# Convert image to base64
with open(image_path, "rb") as image_file:
image_b64 = base64.b64encode(image_file.read()).decode()
messages = [{
"role": "user",
"content": [
{"type": "text", "text": "Classify this image in 1-2 words (e.g., 'machine guard', 'press brake', 'conveyor belt', 'safety sign')."},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_b64}", "detail": "low"}}
]
}]
# For GPT-5 vision, temperature must be default (1.0)
response = self.openai_client.chat.completions.create(
model=OPENAI_CHAT_MODEL,
messages=messages,
max_completion_tokens=50
)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Error classifying image {image_path}: {e}")
return "unknown"
def should_filter_image(self, image_path: str) -> tuple[bool, str]:
"""
Check if image should be filtered out based on height and black image criteria.
Args:
image_path: Path to the image file
Returns:
Tuple of (should_filter: bool, reason: str)
"""
try:
from PIL import Image
import numpy as np
# Open and analyze the image
with Image.open(image_path) as img:
# Convert to RGB if needed
if img.mode != 'RGB':
img = img.convert('RGB')
width, height = img.size
# Filter 1: Height less than 40 pixels
if height < 40:
return True, f"height too small ({height}px)"
# Filter 2: Check if image is mostly black
img_array = np.array(img)
mean_brightness = np.mean(img_array)
# If mean brightness is very low (mostly black)
if mean_brightness < 10: # Adjust threshold as needed
return True, "mostly black image"
except Exception as e:
logger.warning(f"Error analyzing image {image_path}: {e}")
# If we can't analyze it, don't filter it out
return False, "analysis failed"
return False, "passed all filters"
def store_image_metadata(self, image_data: ImageData):
"""Store image metadata in database."""
conn = sqlite3.connect(IMAGES_DB)
cursor = conn.cursor()
# Serialize metadata and embedding
metadata_json = json.dumps(image_data.metadata) if image_data.metadata else None
embedding_blob = image_data.embedding.tobytes() if image_data.embedding is not None else None
cursor.execute('''
INSERT OR REPLACE INTO images
(image_id, image_path, classification, metadata, embedding)
VALUES (?, ?, ?, ?, ?)
''', (image_data.image_id, image_data.image_path,
image_data.classification, metadata_json, embedding_blob))
conn.commit()
conn.close()
def get_image_metadata(self, image_id: str) -> Optional[ImageData]:
"""Retrieve image metadata from database."""
conn = sqlite3.connect(IMAGES_DB)
cursor = conn.cursor()
cursor.execute('''
SELECT image_id, image_path, classification, metadata, embedding
FROM images WHERE image_id = ?
''', (image_id,))
row = cursor.fetchone()
conn.close()
if row:
image_id, image_path, classification, metadata_json, embedding_blob = row
metadata = json.loads(metadata_json) if metadata_json else None
embedding = np.frombuffer(embedding_blob, dtype=np.float32) if embedding_blob else None
return ImageData(
image_path=image_path,
image_id=image_id,
classification=classification,
embedding=embedding,
metadata=metadata
)
return None
def load_text_documents() -> List[Dict[str, Any]]:
"""Convenience function to load all text documents."""
loader = DocumentLoader()
return loader.load_text_documents()
def embed_image_clip(image_paths: List[str]) -> np.ndarray:
"""Convenience function to embed images with CLIP."""
generator = EmbeddingGenerator()
return generator.embed_image_clip(image_paths)
def store_image_metadata(image_data: ImageData):
"""Convenience function to store image metadata."""
processor = ImageProcessor()
processor.store_image_metadata(image_data)
def classify_image(image_path: str) -> str:
"""Convenience function to classify an image."""
processor = ImageProcessor()
return processor.classify_image(image_path) |