Spaces:
Paused
Paused
File size: 52,822 Bytes
ff7fb28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 |
"""
Multi-Method RAG System - SIGHT
Enhanced Streamlit application with method comparison and analytics.
Directory structure:
/data/ # Original PDFs, HTML
/embeddings/ # FAISS, Chroma, DPR vector stores
/graph/ # Graph database files
/metadata/ # Image metadata (SQLite or MongoDB)
"""
import streamlit as st
import os
import logging
import tempfile
import time
import uuid
from typing import Tuple, List, Dict, Any, Optional
from pathlib import Path
# NEW: same-origin base path for the backend on Hugging Face Spaces
# The Docker/Nginx setup routes /api/* to your FastAPI.
API_BASE = os.getenv("BACKEND_BASE", "/api") # e.g., "/api"
# Import all query modules
from query_graph import query as graph_query, query_graph
from query_vanilla import query as vanilla_query
from query_dpr import query as dpr_query
from query_bm25 import query as bm25_query
from query_context import query as context_query
from query_vision import query as vision_query, query_image_only
from config import *
from analytics_db import log_query, get_analytics_stats, get_method_performance, analytics_db
import streamlit.components.v1 as components
import requests
logger = logging.getLogger(__name__)
# Check realtime server health
@st.cache_data(ttl=30) # Cache for 30 seconds
def check_realtime_server_health():
"""Check if the realtime server is running."""
try:
# CHANGED: same-origin health check behind /api
response = requests.get(f"{API_BASE}/health", timeout=2)
return response.status_code == 200
except:
return False
# Query method dispatch
QUERY_DISPATCH = {
'graph': graph_query,
'vanilla': vanilla_query,
'dpr': dpr_query,
'bm25': bm25_query,
'context': context_query,
'vision': vision_query
}
# Method options for speech interface
METHOD_OPTIONS = ['graph', 'vanilla', 'dpr', 'bm25', 'context', 'vision']
def format_citations_html(chunks):
"""Format citations for display (backward compatibility)."""
html = []
for idx, (hdr, sc, txt, citation) in enumerate(chunks, start=1):
body = txt.replace("\n", "<br>")
html.append(
f"<details>"
f"<summary>{hdr} (relevance score: {sc:.3f})</summary>"
f"<div style='font-size:0.9em; margin-top:0.5em;'>"
f"<strong>Source:</strong> {citation} "
f"</div>"
f"<div style='font-size:0.8em; margin-left:1em; margin-top:0.5em;'>{body}</div>"
f"</details><br><br>"
)
return "<br>".join(html)
def format_citations_html(citations: List[dict], method: str) -> str:
"""Format citations as HTML based on method and citation type."""
if not citations:
return "<p><em>No citations available</em></p>"
html_parts = ["<div style='margin-top: 1em;'><strong>Sources:</strong><ul>"]
for citation in citations:
# Skip citations without source
if 'source' not in citation:
continue
source = citation['source']
cite_type = citation.get('type', 'unknown')
# Build citation text based on type
if cite_type == 'pdf':
cite_text = f"π {source} (PDF)"
elif cite_type == 'html':
url = citation.get('url', '')
if url:
cite_text = f"π <a href='{url}' target='_blank'>{source}</a> (Web)"
else:
cite_text = f"π {source} (Web)"
elif cite_type == 'image':
page = citation.get('page', 'N/A')
cite_text = f"πΌοΈ {source} (Image, page {page})"
elif cite_type == 'image_analysis':
classification = citation.get('classification', 'N/A')
cite_text = f"π {source} - {classification}"
else:
cite_text = f"π {source}"
# Add scores if available
scores = []
if 'relevance_score' in citation:
scores.append(f"relevance: {citation['relevance_score']}")
if 'bm25_score' in citation:
scores.append(f"BM25: {citation['bm25_score']}")
if 'rerank_score' in citation:
scores.append(f"rerank: {citation['rerank_score']}")
if 'similarity' in citation:
scores.append(f"similarity: {citation['similarity']}")
if 'score' in citation:
scores.append(f"score: {citation['score']:.3f}")
if scores:
cite_text += f" <small>({', '.join(scores)})</small>"
html_parts.append(f"<li>{cite_text}</li>")
html_parts.append("</ul></div>")
return "".join(html_parts)
def save_uploaded_file(uploaded_file) -> str:
"""Save uploaded file to temporary location."""
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=Path(uploaded_file.name).suffix) as tmp_file:
tmp_file.write(uploaded_file.getvalue())
return tmp_file.name
except Exception as e:
st.error(f"Error saving file: {e}")
return None
# Page configuration
st.set_page_config(
page_title="Multi-Method RAG System - SIGHT",
page_icon="π",
layout="wide"
)
# Sidebar configuration
st.sidebar.title("Configuration")
# Method selector
st.sidebar.markdown("### Retrieval Method")
selected_method = st.sidebar.radio(
"Choose retrieval method:",
options=['graph', 'vanilla', 'dpr', 'bm25', 'context', 'vision'],
format_func=lambda x: x.capitalize(),
help="Select different RAG methods to compare results"
)
# Display method description
st.sidebar.info(METHOD_DESCRIPTIONS[selected_method])
# Advanced settings
with st.sidebar.expander("Advanced Settings"):
top_k = st.slider("Number of chunks to retrieve", min_value=1, max_value=10, value=DEFAULT_TOP_K)
if selected_method == 'bm25':
use_hybrid = st.checkbox("Use hybrid search (BM25 + semantic)", value=False)
if use_hybrid:
alpha = st.slider("BM25 weight (alpha)", min_value=0.0, max_value=1.0, value=0.5)
# Sidebar info
st.sidebar.markdown("---")
st.sidebar.markdown("### About")
st.sidebar.markdown("**Authors:** [The SIGHT Project Team](https://sites.miamioh.edu/sight/)")
st.sidebar.markdown(f"**Version:** V. {VERSION}")
st.sidebar.markdown(f"**Date:** {DATE}")
st.sidebar.markdown(f"**Model:** {OPENAI_CHAT_MODEL}")
st.sidebar.markdown("---")
st.sidebar.markdown(
"**Funding:** SIGHT is funded by [OHBWC WSIC](https://info.bwc.ohio.gov/for-employers/safety-services/workplace-safety-innovation-center/wsic-overview)"
)
# Main interface with dynamic status
col1, col2 = st.columns([3, 1])
with col1:
st.title("π Multi-Method RAG System - SIGHT")
st.markdown("### Compare different retrieval methods for machine safety Q&A")
with col2:
# Quick stats in the header
if 'chat_history' in st.session_state:
total_queries = len(st.session_state.chat_history)
st.metric("Session Queries", total_queries, delta=None if total_queries == 0 else "+1" if total_queries == 1 else f"+{total_queries}")
# Voice chat status indicator
if st.session_state.get('voice_session_active', False):
st.success("π΄ Voice LIVE")
# Create tabs for different interfaces
tab1, tab2, tab3, tab4 = st.tabs(["π¬ Chat", "π Method Comparison", "π Voice Chat", "π Analytics"])
with tab1:
# Example questions
with st.expander("π Example Questions", expanded=False):
example_cols = st.columns(2)
with example_cols[0]:
st.markdown(
"**General Safety:**\n"
"- What are general machine guarding requirements?\n"
"- How do I perform lockout/tagout?\n"
"- What is required for emergency stops?"
)
with example_cols[1]:
st.markdown(
"**Specific Topics:**\n"
"- Summarize robot safety requirements from OSHA\n"
"- Compare guard types: fixed vs interlocked\n"
"- What are the ANSI standards for machine safety?"
)
# File uploader for vision method
uploaded_file = None
if selected_method == 'vision':
st.markdown("#### πΌοΈ Upload an image for analysis")
uploaded_file = st.file_uploader(
"Choose an image file",
type=['png', 'jpg', 'jpeg', 'bmp', 'gif'],
help="Upload an image of safety equipment, signs, or machinery"
)
if uploaded_file:
col1, col2 = st.columns([1, 2])
with col1:
st.image(uploaded_file, caption="Uploaded Image", use_container_width=True)
# Initialize session state
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'session_id' not in st.session_state:
st.session_state.session_id = str(uuid.uuid4())[:8]
# Chat input
query = st.text_input(
"Ask a question:",
placeholder="E.g., What are the safety requirements for collaborative robots?",
key="chat_input"
)
col1, col2, col3 = st.columns([1, 1, 8])
with col1:
send_button = st.button("π Send", type="primary", use_container_width=True)
with col2:
clear_button = st.button("ποΈ Clear", use_container_width=True)
if clear_button:
st.session_state.chat_history = []
st.rerun()
if send_button and query:
# Save uploaded file if present
image_path = None
if uploaded_file and selected_method == 'vision':
image_path = save_uploaded_file(uploaded_file)
# Show spinner while processing
with st.spinner(f"Searching using {selected_method.upper()} method..."):
start_time = time.time()
error_message = None
answer = ""
citations = []
try:
# Get the appropriate query function
query_func = QUERY_DISPATCH[selected_method]
# Call the query function
if selected_method == 'vision' and not image_path:
error_message = "Please upload an image for vision-based search"
st.error(error_message)
else:
answer, citations = query_func(query, image_path=image_path, top_k=top_k)
# Add to history
st.session_state.chat_history.append({
'query': query,
'answer': answer,
'citations': citations,
'method': selected_method,
'image_path': image_path
})
except Exception as e:
error_message = str(e)
answer = f"Error: {error_message}"
st.error(f"Error processing query: {error_message}")
st.info("Make sure you've run preprocess.py to generate the required indices.")
finally:
# Log query to analytics database (always, even on error)
response_time = (time.time() - start_time) * 1000 # Convert to ms
try:
log_query(
user_query=query,
method=selected_method,
answer=answer,
citations=citations,
response_time=response_time,
image_path=image_path,
error_message=error_message,
top_k=top_k,
session_id=st.session_state.session_id
)
except Exception as log_error:
logger.error(f"Failed to log query: {log_error}")
# Clean up temp file
if image_path and os.path.exists(image_path):
os.unlink(image_path)
# Display chat history
if st.session_state.chat_history:
st.markdown("---")
st.markdown("### Chat History")
for i, entry in enumerate(reversed(st.session_state.chat_history)):
with st.container():
# User message
st.markdown(f"**π§ You** ({entry['method'].upper()}):")
st.markdown(entry['query'])
# Assistant response
st.markdown("**π€ Assistant:**")
st.markdown(entry['answer'])
# Citations
st.markdown(format_citations_html(entry['citations'], entry['method']), unsafe_allow_html=True)
if i < len(st.session_state.chat_history) - 1:
st.markdown("---")
with tab2:
st.markdown("### Method Comparison")
st.markdown("Compare results from different retrieval methods for the same query.")
comparison_query = st.text_input(
"Enter a query to compare across methods:",
placeholder="E.g., What are the requirements for machine guards?",
key="comparison_input"
)
methods_to_compare = st.multiselect(
"Select methods to compare:",
options=['graph', 'vanilla', 'dpr', 'bm25', 'context'],
default=['vanilla', 'bm25'],
help="Vision method requires an image and is not included in comparison"
)
col1, col2 = st.columns([3, 1])
with col1:
compare_button = st.button("π Compare Methods", type="primary")
with col2:
if 'comparison_results' in st.session_state and st.session_state.comparison_results:
if st.button("πͺ Full Screen View", help="View results in a dedicated comparison window"):
st.session_state.show_comparison_window = True
st.rerun()
if compare_button:
if comparison_query and methods_to_compare:
results = {}
progress_bar = st.progress(0)
for idx, method in enumerate(methods_to_compare):
with st.spinner(f"Running {method.upper()}..."):
start_time = time.time()
error_message = None
try:
query_func = QUERY_DISPATCH[method]
answer, citations = query_func(comparison_query, top_k=top_k)
results[method] = {
'answer': answer,
'citations': citations
}
except Exception as e:
error_message = str(e)
answer = f"Error: {error_message}"
citations = []
results[method] = {
'answer': answer,
'citations': citations
}
finally:
# Log comparison queries too
response_time = (time.time() - start_time) * 1000
try:
log_query(
user_query=comparison_query,
method=method,
answer=results[method]['answer'],
citations=results[method]['citations'],
response_time=response_time,
error_message=error_message,
top_k=top_k,
session_id=st.session_state.session_id,
additional_settings={'comparison_mode': True}
)
except Exception as log_error:
logger.error(f"Failed to log comparison query: {log_error}")
progress_bar.progress((idx + 1) / len(methods_to_compare))
# Store results in session state for full screen view
st.session_state.comparison_results = {
'query': comparison_query,
'methods': methods_to_compare,
'results': results,
'timestamp': time.strftime("%Y-%m-%d %H:%M:%S")
}
# Display results in compact columns
cols = st.columns(len(methods_to_compare))
for idx, (method, col) in enumerate(zip(methods_to_compare, cols)):
with col:
st.markdown(f"#### {method.upper()}")
# Use expandable container for full text without truncation
answer = results[method]['answer']
if len(answer) > 800:
# Show first 300 chars, then expandable for full text
st.markdown(answer[:300] + "...")
with st.expander("π Show full answer"):
st.markdown(answer)
else:
# Short answers display fully
st.markdown(answer)
st.markdown(format_citations_html(results[method]['citations'], method), unsafe_allow_html=True)
else:
st.warning("Please enter a query and select at least one method to compare.")
with tab3:
st.markdown("### π Voice Chat - Hands-free AI Assistant")
# Server status check
server_healthy = check_realtime_server_health()
if server_healthy:
st.success("β
**Voice Server Online** - Ready for voice interactions")
else:
st.error("β **Voice Server Offline** - Please start the realtime server: `python realtime_server.py`")
st.code("python realtime_server.py", language="bash")
st.stop()
st.info(
"π€ **Real-time Voice Interaction**: Speak naturally and get instant responses from your chosen RAG method. "
"The AI will automatically transcribe your speech, search the knowledge base, and respond with synthesized voice."
)
# Voice Chat Status and Configuration
col1, col2 = st.columns([2, 1])
with col1:
# Use the same method from sidebar
st.info(f"π **Voice using {selected_method.upper()} method** (change in sidebar)")
with col2:
# Voice settings (simplified)
voice_choice = st.selectbox(
"ποΈ AI Voice:",
["alloy", "echo", "fable", "onyx", "nova", "shimmer"],
index=0,
help="Select the AI voice for responses"
)
response_speed = st.slider(
"β±οΈ Response Speed (seconds):",
min_value=1, max_value=5, value=2,
help="How quickly the AI should respond after you stop speaking"
)
# CHANGED: same-origin base for the JS voice client (used as `serverBase` in the HTML below)
server_url = API_BASE # e.g., "/api"
# Voice Chat Interface
st.markdown("---")
# Initialize voice chat session state
if 'voice_chat_history' not in st.session_state:
st.session_state.voice_chat_history = []
if 'voice_session_active' not in st.session_state:
st.session_state.voice_session_active = False
# Simple Status Display
if st.session_state.voice_session_active:
st.success("π΄ **LIVE** - Voice chat active using " + selected_method.upper())
# Enhanced Voice Interface with better UX
components.html(f"""
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<style>
body {{
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
padding: 20px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border-radius: 10px;
}}
.container {{
max-width: 800px;
margin: 0 auto;
background: rgba(255,255,255,0.1);
padding: 30px;
border-radius: 15px;
backdrop-filter: blur(10px);
}}
.controls {{
display: flex;
gap: 20px;
align-items: center;
justify-content: center;
margin-bottom: 30px;
}}
.status-display {{
text-align: center;
margin: 20px 0;
padding: 15px;
border-radius: 10px;
background: rgba(255,255,255,0.2);
}}
.status-idle {{ background: rgba(108, 117, 125, 0.3); }}
.status-connecting {{ background: rgba(255, 193, 7, 0.3); }}
.status-active {{ background: rgba(40, 167, 69, 0.3); }}
.status-error {{ background: rgba(220, 53, 69, 0.3); }}
button {{
padding: 12px 24px;
font-size: 16px;
border: none;
border-radius: 25px;
cursor: pointer;
transition: all 0.3s ease;
font-weight: bold;
}}
.start-btn {{
background: linear-gradient(45deg, #28a745, #20c997);
color: white;
}}
.start-btn:hover {{ transform: translateY(-2px); box-shadow: 0 4px 12px rgba(40,167,69,0.4); }}
.start-btn:disabled {{
background: #6c757d;
cursor: not-allowed;
transform: none;
box-shadow: none;
}}
.stop-btn {{
background: linear-gradient(45deg, #dc3545, #fd7e14);
color: white;
}}
.stop-btn:hover {{ transform: translateY(-2px); box-shadow: 0 4px 12px rgba(220,53,69,0.4); }}
.stop-btn:disabled {{
background: #6c757d;
cursor: not-allowed;
transform: none;
box-shadow: none;
}}
.log {{
height: 200px;
overflow-y: auto;
border: 1px solid rgba(255,255,255,0.3);
padding: 15px;
background: rgba(0,0,0,0.2);
border-radius: 10px;
font-family: 'Monaco', 'Menlo', monospace;
font-size: 13px;
line-height: 1.4;
}}
.audio-controls {{
text-align: center;
margin: 20px 0;
}}
.pulse {{
animation: pulse 2s infinite;
}}
@keyframes pulse {{
0% {{ transform: scale(1); }}
50% {{ transform: scale(1.05); }}
100% {{ transform: scale(1); }}
}}
.visualizer {{
width: 100%;
height: 60px;
background: rgba(0,0,0,0.2);
border-radius: 10px;
margin: 10px 0;
display: flex;
align-items: center;
justify-content: center;
font-size: 14px;
}}
</style>
</head>
<body>
<div class="container">
<div class="status-display status-idle" id="statusDisplay">
<h3 id="statusTitle">π€ Voice Chat</h3>
<p id="statusText">Click "Start Listening" to begin</p>
</div>
<div class="controls">
<button id="startBtn" class="start-btn">π€ Start Listening</button>
<button id="stopBtn" class="stop-btn" disabled>βΉοΈ Stop</button>
</div>
<div class="audio-controls">
<audio id="remoteAudio" autoplay style="width: 100%; max-width: 400px;"></audio>
</div>
<div class="visualizer" id="visualizer">
π Audio will appear here when active
</div>
<div class="log" id="log"></div>
</div>
<script>
(async () => {{
// CHANGED: use same-origin base (e.g., "/api")
const serverBase = {server_url!r};
const chosenMethod = {selected_method!r};
const voiceChoice = {voice_choice!r};
const responseSpeed = {response_speed!r};
const logEl = document.getElementById('log');
const statusDisplay = document.getElementById('statusDisplay');
const statusTitle = document.getElementById('statusTitle');
const statusText = document.getElementById('statusText');
const startBtn = document.getElementById('startBtn');
const stopBtn = document.getElementById('stopBtn');
const visualizer = document.getElementById('visualizer');
let pc, dc, micStream;
let isConnected = false;
let questionStartTime = null;
function updateStatus(status, title, text, className) {{
statusDisplay.className = `status-display ${{className}}`;
statusTitle.textContent = title;
statusText.textContent = text;
}}
function log(msg, type = 'info') {{
const timestamp = new Date().toLocaleTimeString();
const icon = type === 'error' ? 'β' : type === 'success' ? 'β
' : type === 'warning' ? 'β οΈ' : 'βΉοΈ';
logEl.innerHTML += `<div>${{timestamp}} ${{icon}} ${{msg}}</div>`;
logEl.scrollTop = logEl.scrollHeight;
}}
async function start() {{
startBtn.disabled = true;
stopBtn.disabled = false;
updateStatus('connecting', 'π Connecting...', 'Establishing secure connection to voice services', 'status-connecting');
try {{
log('Initializing voice session...', 'info');
// 1) Fetch ephemeral session token
const sessResp = await fetch(serverBase + "/session", {{
method: "POST",
headers: {{ "Content-Type": "application/json" }},
body: JSON.stringify({{ voice: voiceChoice }})
}});
if (!sessResp.ok) {{
throw new Error(`Server error: ${{sessResp.status}} ${{sessResp.statusText}}`);
}}
const sess = await sessResp.json();
if (sess.error) throw new Error(sess.error);
const EPHEMERAL_KEY = sess.client_secret;
if (!EPHEMERAL_KEY) throw new Error("No ephemeral token from server");
log('β
Session token obtained', 'success');
// 2) Setup WebRTC
pc = new RTCPeerConnection();
const remoteAudio = document.getElementById('remoteAudio');
pc.ontrack = (event) => {{
log('π Audio track received from OpenAI', 'success');
const stream = event.streams[0];
if (stream && stream.getAudioTracks().length > 0) {{
remoteAudio.srcObject = stream;
visualizer.textContent = 'π Audio stream connected - AI can speak';
log(`π΅ Audio tracks: ${{stream.getAudioTracks().length}}`, 'success');
}} else {{
log('β οΈ No audio tracks in stream', 'warning');
visualizer.textContent = 'β οΈ No audio stream received';
}}
}};
// 3) Create data channel
dc = pc.createDataChannel("oai-data");
dc.onopen = () => {{
log('π Data channel established', 'success');
}};
dc.onerror = (error) => {{
log('β Data channel error: ' + error, 'error');
}};
dc.onmessage = (e) => handleDataMessage(e);
// 4) Get microphone
log('π€ Requesting microphone access...', 'info');
micStream = await navigator.mediaDevices.getUserMedia({{ audio: true }});
log('β
Microphone access granted', 'success');
visualizer.textContent = 'π€ Microphone active - speak naturally';
for (const track of micStream.getTracks()) {{
pc.addTrack(track, micStream);
}}
// 5) Setup audio receiving
pc.addTransceiver("audio", {{ direction: "recvonly" }});
log('π Audio receiver configured', 'success');
// 6) Create and set local description
const offer = await pc.createOffer();
await pc.setLocalDescription(offer);
log('π‘ WebRTC offer created', 'success');
// 7) Exchange SDP with OpenAI Realtime
const baseUrl = "https://api.openai.com/v1/realtime";
const model = sess.model || "gpt-4o-realtime-preview";
const sdpResp = await fetch(`${{baseUrl}}?model=${{encodeURIComponent(model)}}`, {{
method: "POST",
body: offer.sdp,
headers: {{
Authorization: `Bearer ${{EPHEMERAL_KEY}}`,
"Content-Type": "application/sdp"
}}
}});
if (!sdpResp.ok) throw new Error(`WebRTC setup failed: ${{sdpResp.status}}`);
const answer = {{ type: "answer", sdp: await sdpResp.text() }};
await pc.setRemoteDescription(answer);
// 8) Configure the session with tools and faster response
setTimeout(() => {{
if (dc.readyState === 'open') {{
const toolDecl = {{
type: "session.update",
session: {{
tools: [{{
"type": "function",
"name": "ask_rag",
"description": "Search the safety knowledge base for accurate, authoritative information. Call this immediately when users ask safety questions to get current, reliable information with proper citations.",
"parameters": {{
"type": "object",
"properties": {{
"query": {{ "type": "string", "description": "User's safety question" }},
"top_k": {{ "type": "integer", "minimum": 1, "maximum": 20, "default": 5 }}
}},
"required": ["query"]
}}
}}],
turn_detection: {{
type: "server_vad",
threshold: 0.5,
prefix_padding_ms: 300,
silence_duration_ms: {response_speed * 1000}
}},
input_audio_transcription: {{
model: "whisper-1"
}},
voice: voiceChoice,
temperature: 0.7,
max_response_output_tokens: 1000,
modalities: ["audio", "text"],
response_format: "audio"
}}
}};
dc.send(JSON.stringify(toolDecl));
log('π οΈ RAG tools configured', 'success');
const initialMessage = {{
type: "conversation.item.create",
item: {{
type: "message",
role: "user",
content: [{{
type: "input_text",
text: "Hello! I'm ready to ask you questions about machine safety. Please speak naturally like a safety expert - no need to mention specific documents or sources, just give me the information as your expertise."
}}]
}}
}};
dc.send(JSON.stringify(initialMessage));
const responseRequest = {{
type: "response.create",
response: {{
modalities: ["audio"],
instructions: "Acknowledge briefly that you're ready to help with safety questions. Speak naturally and confidently as a safety expert - no citations or document references needed."
}}
}};
dc.send(JSON.stringify(responseRequest));
}} else {{
log('β οΈ Data channel not ready, retrying...', 'warning');
}}
}}, 500);
isConnected = true;
updateStatus('active', 'π€ Live - Speak Now!', `Using ${{chosenMethod.toUpperCase()}} method β’ Voice: ${{voiceChoice}} β’ Response: ${{responseSpeed}}s`, 'status-active');
startBtn.classList.add('pulse');
}} catch (error) {{
log(`β Connection failed: ${{
(error && (error.message || error.toString())) || 'Unknown error'
}}`, 'error');
updateStatus('error', 'β Connection Failed', (error && (error.message || error.toString())) || 'Unknown error', 'status-error');
startBtn.disabled = false;
stopBtn.disabled = true;
cleanup();
}}
}}
function cleanup() {{
try {{
if (dc && dc.readyState === 'open') dc.close();
if (pc) pc.close();
if (micStream) micStream.getTracks().forEach(t => t.stop());
}} catch (e) {{ /* ignore cleanup errors */ }}
startBtn.classList.remove('pulse');
visualizer.textContent = 'π Audio inactive';
}}
async function stop() {{
startBtn.disabled = false;
stopBtn.disabled = true;
isConnected = false;
updateStatus('idle', 'βͺ Session Ended', 'Click "Start Listening" to begin a new voice session', 'status-idle');
log('π Voice session terminated', 'info');
cleanup();
}}
// Handle realtime events
async function handleDataMessage(e) {{
if (!isConnected) return;
try {{
const msg = JSON.parse(e.data);
if (msg.type === "response.function_call") {{
const {{ name, call_id, arguments: args }} = msg;
if (name === "ask_rag") {{
visualizer.textContent = 'β
Question received - searching...';
const query = JSON.parse(args || "{{}}").query;
log(`β
AI heard: "${{query}}"`, 'success');
log('π Searching knowledge base...', 'info');
const payload = JSON.parse(args || "{{}}");
const ragResp = await fetch(serverBase + "/rag", {{
method: "POST",
headers: {{ "Content-Type": "application/json" }},
body: JSON.stringify({{
query: payload.query,
top_k: payload.top_k ?? 5,
method: chosenMethod
}})
}});
const rag = await ragResp.json();
if (dc && dc.readyState === 'open') {{
dc.send(JSON.stringify({{
type: "response.function_call_result",
call_id,
output: JSON.stringify({{
answer: rag.answer,
instruction: "Speak this information naturally as your expertise. Do not mention sources or documents."
}})
}}));
}} else {{
log('β οΈ Data channel closed, cannot send result', 'warning');
}}
const searchTime = ((Date.now() - questionStartTime) / 1000).toFixed(1);
log(`β
Found ${{rag.citations?.length || 0}} citations in ${{searchTime}}s`, 'success');
visualizer.textContent = 'ποΈ AI is speaking your answer...';
}}
}}
if (msg.type === "input_audio_buffer.speech_started") {{
questionStartTime = Date.now();
visualizer.textContent = 'ποΈ Listening to you...';
log('π€ Speech detected', 'info');
}}
if (msg.type === "input_audio_buffer.speech_stopped") {{
visualizer.textContent = 'π€ Processing your question...';
log('βΈοΈ Processing speech...', 'info');
}}
if (msg.type === "response.audio.delta") {{
visualizer.textContent = 'π AI speaking...';
}}
if (msg.type === "response.done") {{
if (questionStartTime) {{
const totalTime = ((Date.now() - questionStartTime) / 1000).toFixed(1);
visualizer.textContent = 'π€ Your turn - speak now';
log(`β
Response complete in ${{totalTime}}s`, 'success');
questionStartTime = null;
}} else {{
visualizer.textContent = 'π€ Your turn - speak now';
log('β
Response complete', 'success');
}}
}}
}} catch (err) {{
// Ignore non-JSON messages
}}
}}
startBtn.onclick = start;
stopBtn.onclick = stop;
// Initialize
log('π Voice chat interface loaded', 'success');
}})();
</script>
</body>
</html>
""", height=600, scrolling=True)
# Voice Chat History
if st.session_state.voice_chat_history:
st.markdown("### π£οΈ Recent Voice Conversations")
for i, entry in enumerate(reversed(st.session_state.voice_chat_history[-5:])):
with st.expander(f"π€ Conversation {len(st.session_state.voice_chat_history)-i} - {entry.get('method', 'unknown').upper()}"):
st.write(f"**Query**: {entry.get('query', 'N/A')}")
st.write(f"**Response**: {entry.get('answer', 'N/A')[:200]}...")
st.write(f"**Citations**: {len(entry.get('citations', []))}")
st.write(f"**Timestamp**: {entry.get('timestamp', 'N/A')}")
with tab4:
st.markdown("### π Analytics Dashboard")
st.markdown("*Persistent analytics from all user interactions*")
# Time period selector
col1, col2 = st.columns([3, 1])
with col1:
st.markdown("")
with col2:
days_filter = st.selectbox("Time Period", [7, 30, 90, 365], index=1, format_func=lambda x: f"Last {x} days")
# Get analytics data
try:
stats = get_analytics_stats(days=days_filter)
performance = get_method_performance()
recent_queries = analytics_db.get_recent_queries(limit=10)
# Overview Metrics
st.markdown("#### π Overview")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric(
"Total Queries",
stats.get('total_queries', 0),
help="All queries processed in the selected time period"
)
with col2:
avg_citations = stats.get('avg_citations', 0)
st.metric(
"Avg Citations",
f"{avg_citations:.1f}",
help="Average number of citations per query"
)
with col3:
error_rate = stats.get('error_rate', 0)
st.metric(
"Success Rate",
f"{100 - error_rate:.1f}%",
delta=f"-{error_rate:.1f}% errors" if error_rate > 0 else None,
help="Percentage of successful queries"
)
with col4:
total_citations = stats.get('total_citations', 0)
st.metric(
"Total Citations",
total_citations,
help="Total citations generated across all queries"
)
# Method Performance Comparison
if performance:
st.markdown("#### β‘ Method Performance")
perf_data = []
for method, metrics in performance.items():
perf_data.append({
'Method': method.upper(),
'Avg Response Time (ms)': f"{metrics['avg_response_time']:.0f}",
'Avg Citations': f"{metrics['avg_citations']:.1f}",
'Avg Answer Length': f"{metrics['avg_answer_length']:.0f}",
'Query Count': int(metrics['query_count'])
})
if perf_data:
st.dataframe(perf_data, use_container_width=True, hide_index=True)
# Method Usage with Voice Interaction Indicator
method_usage = stats.get('method_usage', {})
if method_usage:
st.markdown("#### π― Method Usage Distribution")
col1, col2 = st.columns([2, 1])
with col1:
st.bar_chart(method_usage)
with col2:
st.markdown("**Most Popular Methods:**")
sorted_methods = sorted(method_usage.items(), key=lambda x: x[1], reverse=True)
for i, (method, count) in enumerate(sorted_methods[:3], 1):
percentage = (count / sum(method_usage.values())) * 100
st.markdown(f"{i}. **{method.upper()}** - {count} queries ({percentage:.1f}%)")
# Voice interaction stats
try:
voice_queries = analytics_db.get_voice_interaction_stats()
if voice_queries and voice_queries.get('total_voice_queries', 0) > 0:
st.markdown("---")
st.markdown("**π€ Voice Interactions:**")
st.markdown(f"π Voice queries: {voice_queries['total_voice_queries']}")
if voice_queries.get('avg_voice_response_time', 0) > 0:
st.markdown(f"β±οΈ Avg response time: {voice_queries['avg_voice_response_time']:.1f}ms")
if sum(method_usage.values()) > 0:
voice_percentage = (voice_queries['total_voice_queries'] / sum(method_usage.values())) * 100
st.markdown(f"π Voice usage: {voice_percentage:.1f}%")
except Exception as e:
logger.error(f"Voice stats error: {e}")
pass
# Voice Analytics Section (if voice interactions exist)
try:
voice_queries = analytics_db.get_voice_interaction_stats()
if voice_queries and voice_queries.get('total_voice_queries', 0) > 0:
st.markdown("#### π€ Voice Interaction Analytics")
col1, col2 = st.columns([2, 1])
with col1:
voice_by_method = voice_queries.get('voice_by_method', {})
if voice_by_method:
st.bar_chart(voice_by_method)
else:
st.info("No voice method breakdown available yet")
with col2:
st.markdown("**Voice Stats:**")
total_voice = voice_queries['total_voice_queries']
st.markdown(f"π Total voice queries: {total_voice}")
avg_response = voice_queries.get('avg_voice_response_time', 0)
if avg_response > 0:
st.markdown(f"β±οΈ Avg response: {avg_response:.1f}ms")
# Most used voice method
if voice_by_method:
most_used_voice = max(voice_by_method.items(), key=lambda x: x[1])
st.markdown(f"π― Top voice method: {most_used_voice[0].upper()}")
except Exception as e:
logger.error(f"Voice analytics error: {e}")
# Citation Analysis
citation_types = stats.get('citation_types', {})
if citation_types:
st.markdown("#### π Citation Sources")
col1, col2 = st.columns([2, 1])
with col1:
# Filter out empty/null citation types
filtered_citations = {k: v for k, v in citation_types.items() if k and k.strip()}
if filtered_citations:
st.bar_chart(filtered_citations)
with col2:
st.markdown("**Source Breakdown:**")
total_citations = sum(citation_types.values())
for cite_type, count in sorted(citation_types.items(), key=lambda x: x[1], reverse=True):
if cite_type and cite_type.strip():
percentage = (count / total_citations) * 100
icon = "π" if cite_type == "pdf" else "π" if cite_type == "html" else "πΌοΈ" if cite_type == "image" else "π"
st.markdown(f"{icon} **{cite_type.title()}**: {count} ({percentage:.1f}%)")
# Popular Keywords
keywords = stats.get('top_keywords', {})
if keywords:
st.markdown("#### π Popular Query Topics")
col1, col2, col3 = st.columns(3)
keyword_items = list(keywords.items())
for i, (word, count) in enumerate(keyword_items[:9]): # Top 9 keywords
col = [col1, col2, col3][i % 3]
with col:
st.metric(word.title(), count)
# Recent Queries with Responses
if recent_queries:
st.markdown("#### π Recent Queries & Responses")
for query in recent_queries[:5]: # Show last 5
# Create expander title with query preview
query_preview = query['query'][:60] + "..." if len(query['query']) > 60 else query['query']
expander_title = f"π§ **{query['method'].upper()}**: {query_preview}"
with st.expander(expander_title):
# Query details
st.markdown(f"**π Full Query:** {query['query']}")
# Metrics row
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Answer Length", f"{query['answer_length']} chars")
with col2:
st.metric("Citations", query['citations'])
with col3:
if query['response_time']:
st.metric("Response Time", f"{query['response_time']:.0f}ms")
else:
st.metric("Response Time", "N/A")
with col4:
status = "β Error" if query.get('error_message') else "β
Success"
st.markdown(f"**Status:** {status}")
# Show error message if exists
if query.get('error_message'):
st.error(f"**Error:** {query['error_message']}")
else:
# Show answer in a styled container
st.markdown("**π€ Response:**")
answer = query.get('answer', 'No answer available')
# Truncate very long answers for better UX
if len(answer) > 1000:
st.markdown(
f'<div style="background-color: #f8f9fa; padding: 15px; border-radius: 8px; border-left: 4px solid #28a745;">'
f'{answer[:800].replace(chr(10), "<br>")}<br><br>'
f'<i>... (truncated, showing first 800 chars of {len(answer)} total)</i>'
f'</div>',
unsafe_allow_html=True
)
# Option to view full answer
if st.button(f"π View Full Answer", key=f"full_answer_{query['query_id']}"):
st.markdown("**Full Answer:**")
st.markdown(
f'<div style="background-color: #f8f9fa; padding: 15px; border-radius: 8px; max-height: 400px; overflow-y: auto;">'
f'{answer.replace(chr(10), "<br>")}'
f'</div>',
unsafe_allow_html=True
)
else:
# Short answers display fully
st.markdown(
f'<div style="background-color: #f8f9fa; padding: 15px; border-radius: 8px; border-left: 4px solid #28a745;">'
f'{answer.replace(chr(10), "<br>")}'
f'</div>',
unsafe_allow_html=True
)
# Show detailed citation info
if query['citations'] > 0:
if st.button(f"π View Citations", key=f"citations_{query['query_id']}"):
detailed_query = analytics_db.get_query_with_citations(query['query_id'])
if detailed_query and 'citations' in detailed_query:
st.markdown("**Citations:**")
for i, citation in enumerate(detailed_query['citations'], 1):
scores = []
if citation.get('relevance_score'):
scores.append(f"relevance: {citation['relevance_score']:.3f}")
if citation.get('bm25_score'):
scores.append(f"BM25: {citation['bm25_score']:.3f}")
if citation.get('rerank_score'):
scores.append(f"rerank: {citation['rerank_score']:.3f}")
score_text = f" ({', '.join(scores)})" if scores else ""
st.markdown(f"{i}. **{citation['source']}** {score_text}")
st.markdown(f"**π Timestamp:** {query['timestamp']}")
st.markdown("---")
# Session Info
st.markdown("---")
col1, col2 = st.columns([3, 1])
with col1:
st.markdown("*Analytics are updated in real-time and persist across sessions*")
with col2:
st.markdown(f"**Session ID:** `{st.session_state.session_id}`")
except Exception as e:
st.error(f"Error loading analytics: {e}")
st.info("Analytics data will appear after your first query. The database is created automatically.")
# Fallback to session analytics
if st.session_state.chat_history:
st.markdown("#### π Current Session")
col1, col2 = st.columns(2)
with col1:
st.metric("Session Queries", len(st.session_state.chat_history))
with col2:
methods_used = [entry['method'] for entry in st.session_state.chat_history]
most_used = max(set(methods_used), key=methods_used.count) if methods_used else "N/A"
st.metric("Most Used Method", most_used.upper() if most_used != "N/A" else most_used)
# Full Screen Comparison Window (Modal-like)
if st.session_state.get('show_comparison_window', False):
st.markdown("---")
# Header with close button
col1, col2 = st.columns([4, 1])
with col1:
comparison_data = st.session_state.comparison_results
st.markdown(f"## πͺ Full Screen Comparison")
st.markdown(f"**Query:** {comparison_data['query']}")
st.markdown(f"**Generated:** {comparison_data['timestamp']} | **Methods:** {', '.join([m.upper() for m in comparison_data['methods']])}")
with col2:
if st.button("βοΈ Close", help="Close full screen view"):
st.session_state.show_comparison_window = False
st.rerun()
st.markdown("---")
# Full-width comparison display
results = comparison_data['results']
methods = comparison_data['methods']
for method in methods:
st.markdown(f"### πΈ {method.upper()} Method")
# Answer
answer = results[method]['answer']
st.markdown("**Answer:**")
# Use a container with custom styling for better readability
with st.container():
st.markdown(
f'<div style="background-color: #f0f2f6; padding: 20px; border-radius: 10px; margin: 10px 0; border-left: 5px solid #1f77b4;">'
f'{answer.replace(chr(10), "<br>")}'
f'</div>',
unsafe_allow_html=True
)
# Citations
st.markdown("**Citations:**")
st.markdown(format_citations_html(results[method]['citations'], method), unsafe_allow_html=True)
# Statistics
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Answer Length", f"{len(answer)} chars")
with col2:
st.metric("Citations", len(results[method]['citations']))
with col3:
word_count = len(answer.split())
st.metric("Word Count", word_count)
if method != methods[-1]: # Not the last method
st.markdown("---")
# Summary comparison table
st.markdown("### π Method Comparison Summary")
summary_data = []
for method in methods:
summary_data.append({
'Method': method.upper(),
'Answer Length (chars)': len(results[method]['answer']),
'Word Count': len(results[method]['answer'].split()),
'Citations': len(results[method]['citations']),
'Avg Citation Score': round(
sum(float(c.get('relevance_score', 0) or c.get('score', 0) or 0)
for c in results[method]['citations']) / len(results[method]['citations'])
if results[method]['citations'] else 0, 3
)
})
st.dataframe(summary_data, use_container_width=True, hide_index=True)
st.markdown("---")
# Return to normal view button
col1, col2, col3 = st.columns([2, 1, 2])
with col2:
if st.button("β¬
οΈ Back to Comparison Tab", type="primary", use_container_width=True):
st.session_state.show_comparison_window = False
st.rerun()
st.stop() # Stop rendering the rest of the app when in full screen mode
# Footer
st.markdown("---")
st.markdown(
"**β οΈ Disclaimer:** *This system uses AI to retrieve and generate responses. "
"While we strive for accuracy, please verify critical safety information with official sources.*"
)
st.markdown(
"**π Acknowledgment:** *We thank [Ohio BWC/WSIC](https://info.bwc.ohio.gov/) "
"for funding that made this multi-method RAG system possible.*"
)
|