Spaces:
Running
Running
Fixed issues with TimeGPT
Browse files
app.py
CHANGED
|
@@ -18,15 +18,341 @@ from statsforecast.models import (
|
|
| 18 |
|
| 19 |
from utilsforecast.evaluation import evaluate
|
| 20 |
from utilsforecast.losses import *
|
| 21 |
-
from utilsforecast.plotting import plot_series
|
| 22 |
|
|
|
|
| 23 |
from nixtla import NixtlaClient
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def download_sample():
|
| 31 |
sample_data = """unique_id,ds,y
|
| 32 |
^GSPC,2023-01-03,3824.139892578125
|
|
@@ -597,223 +923,211 @@ def download_sample():
|
|
| 597 |
temp.close()
|
| 598 |
return temp.name
|
| 599 |
|
| 600 |
-
#
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
required_cols = ['unique_id', 'ds', 'y']
|
| 607 |
-
missing = [c for c in required_cols if c not in df.columns]
|
| 608 |
-
if missing:
|
| 609 |
-
return None, f"Missing required columns: {', '.join(missing)}"
|
| 610 |
-
df['ds'] = pd.to_datetime(df['ds'])
|
| 611 |
-
df = df.sort_values(['unique_id', 'ds']).reset_index(drop=True)
|
| 612 |
-
if df['y'].isna().any():
|
| 613 |
-
return None, "Data contains missing values in 'y'"
|
| 614 |
-
return df, "Data loaded successfully!"
|
| 615 |
-
except Exception as e:
|
| 616 |
-
return None, f"Error loading data: {e}"
|
| 617 |
-
|
| 618 |
-
# Export results to CSV files for download
|
| 619 |
-
def export_results(eval_df, validation_df, future_df):
|
| 620 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 621 |
-
temp_dir = tempfile.mkdtemp()
|
| 622 |
-
result_files = []
|
| 623 |
-
if eval_df is not None:
|
| 624 |
-
path = os.path.join(temp_dir, f"evaluation_metrics_{timestamp}.csv")
|
| 625 |
-
eval_df.to_csv(path, index=False)
|
| 626 |
-
result_files.append(path)
|
| 627 |
-
if validation_df is not None:
|
| 628 |
-
path = os.path.join(temp_dir, f"validation_results_{timestamp}.csv")
|
| 629 |
-
validation_df.to_csv(path, index=False)
|
| 630 |
-
result_files.append(path)
|
| 631 |
-
if future_df is not None:
|
| 632 |
-
path = os.path.join(temp_dir, f"future_forecasts_{timestamp}.csv")
|
| 633 |
-
future_df.to_csv(path, index=False)
|
| 634 |
-
result_files.append(path)
|
| 635 |
-
return result_files
|
| 636 |
-
|
| 637 |
-
# Main forecasting logic
|
| 638 |
-
def run_forecast(
|
| 639 |
-
file,
|
| 640 |
-
frequency,
|
| 641 |
-
eval_strategy,
|
| 642 |
-
horizon,
|
| 643 |
-
step_size,
|
| 644 |
-
num_windows,
|
| 645 |
-
use_historical_avg,
|
| 646 |
-
use_naive,
|
| 647 |
-
use_seasonal_naive,
|
| 648 |
-
seasonality,
|
| 649 |
-
use_window_avg,
|
| 650 |
-
window_size,
|
| 651 |
-
use_seasonal_window_avg,
|
| 652 |
-
seasonal_window_size,
|
| 653 |
-
use_autoets,
|
| 654 |
-
use_autoarima,
|
| 655 |
-
use_timegpt,
|
| 656 |
-
future_horizon
|
| 657 |
-
):
|
| 658 |
-
df, msg = load_data(file)
|
| 659 |
-
if df is None:
|
| 660 |
-
# return placeholders plus message
|
| 661 |
-
return [None]*9 + [msg]
|
| 662 |
-
|
| 663 |
-
# Build model list
|
| 664 |
-
models = []
|
| 665 |
-
if use_historical_avg:
|
| 666 |
-
models.append(HistoricAverage())
|
| 667 |
-
if use_naive:
|
| 668 |
-
models.append(Naive())
|
| 669 |
-
if use_seasonal_naive:
|
| 670 |
-
models.append(SeasonalNaive(season_length=seasonality))
|
| 671 |
-
if use_window_avg:
|
| 672 |
-
models.append(WindowAverage(window_size=window_size))
|
| 673 |
-
if use_seasonal_window_avg:
|
| 674 |
-
models.append(SeasonalWindowAverage(season_length=seasonal_window_size))
|
| 675 |
-
if use_autoets:
|
| 676 |
-
models.append(AutoETS(season_length=seasonality))
|
| 677 |
-
if use_autoarima:
|
| 678 |
-
models.append(AutoARIMA(season_length=seasonality))
|
| 679 |
-
|
| 680 |
-
if not models and not use_timegpt:
|
| 681 |
-
return [None]*9 + ["Please select at least one forecasting model"]
|
| 682 |
-
|
| 683 |
-
# StatsForecast run
|
| 684 |
-
sf = StatsForecast(models=models, freq=frequency, n_jobs=-1) if models else None
|
| 685 |
-
|
| 686 |
-
# Cross validation or fixed-window evaluation
|
| 687 |
-
validation_df, fig_val = None, None
|
| 688 |
-
if sf is not None:
|
| 689 |
-
if eval_strategy == "Cross Validation":
|
| 690 |
-
validation_df = sf.cross_validation(
|
| 691 |
-
df=df, h=horizon, step_size=step_size, periods=num_windows
|
| 692 |
-
)
|
| 693 |
-
else:
|
| 694 |
-
# Fixed window splits
|
| 695 |
-
cutoff = df['ds'].max() - pd.to_timedelta(horizon, unit=frequency)
|
| 696 |
-
validation_df = sf.forecast(df[df['ds'] <= cutoff], h=horizon)
|
| 697 |
-
eval_df = evaluate(validation_df)
|
| 698 |
-
fig_val = plot_series(df=df, forecast_df=validation_df, title="Validation Results")
|
| 699 |
-
else:
|
| 700 |
-
eval_df = None
|
| 701 |
-
|
| 702 |
-
# Future forecast with StatsForecast
|
| 703 |
-
future_df, fig_future = None, None
|
| 704 |
-
if sf is not None:
|
| 705 |
-
future_df = sf.forecast(df=df, h=future_horizon)
|
| 706 |
-
fig_future = plot_series(df=df, forecast_df=future_df, title="Future Forecast")
|
| 707 |
-
|
| 708 |
-
# TimeGPT / Transformer forecast
|
| 709 |
-
tg_df, fig_tg = None, None
|
| 710 |
-
if use_timegpt:
|
| 711 |
-
tdf = df[['unique_id', 'ds', 'y']]
|
| 712 |
-
tg_df = nixtla_client.forecast(
|
| 713 |
-
df=tdf, h=future_horizon, freq=frequency, level=[95]
|
| 714 |
-
)
|
| 715 |
-
fig_tg = nixtla_client.plot(
|
| 716 |
-
df=tdf, forecasts_df=tg_df, level=[95]
|
| 717 |
-
)
|
| 718 |
-
|
| 719 |
-
# Export all results
|
| 720 |
-
files = export_results(
|
| 721 |
-
eval_df if sf is not None else None,
|
| 722 |
-
validation_df,
|
| 723 |
-
future_df
|
| 724 |
-
)
|
| 725 |
-
|
| 726 |
-
return (
|
| 727 |
-
eval_df,
|
| 728 |
-
validation_df,
|
| 729 |
-
fig_val,
|
| 730 |
-
future_df,
|
| 731 |
-
fig_future,
|
| 732 |
-
tg_df,
|
| 733 |
-
fig_tg,
|
| 734 |
-
files,
|
| 735 |
-
"Analysis completed successfully!"
|
| 736 |
-
)
|
| 737 |
|
| 738 |
-
#
|
| 739 |
-
theme = None # adjust or import your theme
|
| 740 |
with gr.Blocks(title="Time Series Forecasting App", theme=theme) as app:
|
| 741 |
gr.Markdown("# 📈 Time Series Forecasting App")
|
| 742 |
-
gr.Markdown(
|
| 743 |
-
|
| 744 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 745 |
|
| 746 |
with gr.Row():
|
| 747 |
with gr.Column(scale=2):
|
| 748 |
file_input = gr.File(label="Upload CSV file", file_types=[".csv"])
|
|
|
|
| 749 |
download_btn = gr.Button("Download Sample Data", variant="secondary")
|
| 750 |
-
download_output = gr.File(label="
|
| 751 |
download_btn.click(fn=download_sample, outputs=download_output)
|
| 752 |
|
| 753 |
with gr.Accordion("Data & Validation Settings", open=True):
|
| 754 |
frequency = gr.Dropdown(
|
| 755 |
-
choices=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 756 |
)
|
|
|
|
|
|
|
| 757 |
eval_strategy = gr.Radio(
|
| 758 |
-
choices=["
|
| 759 |
-
|
| 760 |
-
|
| 761 |
)
|
| 762 |
-
|
| 763 |
-
|
| 764 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 765 |
|
| 766 |
-
with gr.Accordion("
|
| 767 |
-
|
| 768 |
-
|
| 769 |
-
|
| 770 |
-
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 781 |
|
| 782 |
with gr.Column(scale=3):
|
| 783 |
-
|
| 784 |
-
|
|
|
|
| 785 |
with gr.TabItem("Validation Results"):
|
| 786 |
-
|
| 787 |
validation_plot = gr.Plot(label="Validation Plot")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 788 |
with gr.TabItem("Future Forecast"):
|
| 789 |
-
forecast_output = gr.Dataframe(label="Future Forecast Data")
|
| 790 |
forecast_plot = gr.Plot(label="Future Forecast Plot")
|
| 791 |
-
|
| 792 |
-
|
| 793 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 794 |
with gr.TabItem("Export Results"):
|
| 795 |
export_files = gr.Files(label="Download Results")
|
| 796 |
|
| 797 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 798 |
|
| 799 |
-
|
| 800 |
submit_btn.click(
|
| 801 |
fn=run_forecast,
|
| 802 |
inputs=[
|
| 803 |
file_input, frequency, eval_strategy, horizon, step_size, num_windows,
|
| 804 |
use_historical_avg, use_naive, use_seasonal_naive, seasonality,
|
| 805 |
use_window_avg, window_size, use_seasonal_window_avg, seasonal_window_size,
|
| 806 |
-
use_autoets, use_autoarima, use_timegpt,
|
|
|
|
| 807 |
],
|
| 808 |
-
outputs=[
|
| 809 |
-
eval_output,
|
| 810 |
-
validation_output, validation_plot,
|
| 811 |
-
forecast_output, forecast_plot,
|
| 812 |
-
tg_output, tg_plot,
|
| 813 |
-
export_files,
|
| 814 |
-
message_output
|
| 815 |
-
]
|
| 816 |
)
|
| 817 |
|
| 818 |
if __name__ == "__main__":
|
| 819 |
-
app.launch(share=False)
|
|
|
|
| 18 |
|
| 19 |
from utilsforecast.evaluation import evaluate
|
| 20 |
from utilsforecast.losses import *
|
|
|
|
| 21 |
|
| 22 |
+
# Import for TimeGPT
|
| 23 |
from nixtla import NixtlaClient
|
| 24 |
|
| 25 |
+
# Function to load and process uploaded CSV
|
| 26 |
+
def load_data(file):
|
| 27 |
+
if file is None:
|
| 28 |
+
return None, "Please upload a CSV file"
|
| 29 |
+
try:
|
| 30 |
+
df = pd.read_csv(file)
|
| 31 |
+
required_cols = ['unique_id', 'ds', 'y']
|
| 32 |
+
missing_cols = [col for col in required_cols if col not in df.columns]
|
| 33 |
+
if missing_cols:
|
| 34 |
+
return None, f"Missing required columns: {', '.join(missing_cols)}"
|
| 35 |
+
|
| 36 |
+
df['ds'] = pd.to_datetime(df['ds'])
|
| 37 |
+
df = df.sort_values(['unique_id', 'ds']).reset_index(drop=True)
|
| 38 |
+
|
| 39 |
+
# Check for NaN values
|
| 40 |
+
if df['y'].isna().any():
|
| 41 |
+
return None, "Data contains missing values in the 'y' column"
|
| 42 |
+
|
| 43 |
+
return df, "Data loaded successfully!"
|
| 44 |
+
except Exception as e:
|
| 45 |
+
return None, f"Error loading data: {str(e)}"
|
| 46 |
+
|
| 47 |
+
# Function to generate and return a plot
|
| 48 |
+
def create_forecast_plot(forecast_df, original_df, title="Forecasting Results"):
|
| 49 |
+
plt.figure(figsize=(12, 7))
|
| 50 |
+
unique_ids = forecast_df['unique_id'].unique()
|
| 51 |
+
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds', 'cutoff']]
|
| 52 |
+
|
| 53 |
+
colors = plt.cm.tab10.colors
|
| 54 |
+
|
| 55 |
+
for i, unique_id in enumerate(unique_ids):
|
| 56 |
+
original_data = original_df[original_df['unique_id'] == unique_id]
|
| 57 |
+
plt.plot(original_data['ds'], original_data['y'], 'k-', linewidth=2, label=f'{unique_id} (Actual)')
|
| 58 |
+
|
| 59 |
+
forecast_data = forecast_df[forecast_df['unique_id'] == unique_id]
|
| 60 |
+
for j, col in enumerate(forecast_cols):
|
| 61 |
+
if col in forecast_data.columns:
|
| 62 |
+
plt.plot(forecast_data['ds'], forecast_data[col],
|
| 63 |
+
color=colors[j % len(colors)],
|
| 64 |
+
linestyle='--',
|
| 65 |
+
linewidth=1.5,
|
| 66 |
+
label=f'{col}')
|
| 67 |
+
|
| 68 |
+
plt.title(title, fontsize=16)
|
| 69 |
+
plt.xlabel('Date', fontsize=12)
|
| 70 |
+
plt.ylabel('Value', fontsize=12)
|
| 71 |
+
plt.grid(True, alpha=0.3)
|
| 72 |
+
plt.legend(loc='best')
|
| 73 |
+
plt.tight_layout()
|
| 74 |
+
|
| 75 |
+
# Format date labels better
|
| 76 |
+
fig = plt.gcf()
|
| 77 |
+
ax = plt.gca()
|
| 78 |
+
fig.autofmt_xdate()
|
| 79 |
+
|
| 80 |
+
return fig
|
| 81 |
|
| 82 |
+
# Function to create a plot for future forecasts
|
| 83 |
+
def create_future_forecast_plot(forecast_df, original_df):
|
| 84 |
+
plt.figure(figsize=(12, 7))
|
| 85 |
+
unique_ids = forecast_df['unique_id'].unique()
|
| 86 |
+
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds']]
|
| 87 |
+
|
| 88 |
+
colors = plt.cm.tab10.colors
|
| 89 |
+
|
| 90 |
+
for i, unique_id in enumerate(unique_ids):
|
| 91 |
+
# Plot historical data
|
| 92 |
+
original_data = original_df[original_df['unique_id'] == unique_id]
|
| 93 |
+
plt.plot(original_data['ds'], original_data['y'], 'k-', linewidth=2, label=f'{unique_id} (Historical)')
|
| 94 |
+
|
| 95 |
+
# Plot forecast data with shaded vertical line separator
|
| 96 |
+
forecast_data = forecast_df[forecast_df['unique_id'] == unique_id]
|
| 97 |
+
|
| 98 |
+
# Add vertical line at the forecast start
|
| 99 |
+
if not forecast_data.empty and not original_data.empty:
|
| 100 |
+
forecast_start = forecast_data['ds'].min()
|
| 101 |
+
plt.axvline(x=forecast_start, color='gray', linestyle='--', alpha=0.5)
|
| 102 |
+
|
| 103 |
+
for j, col in enumerate(forecast_cols):
|
| 104 |
+
if col in forecast_data.columns:
|
| 105 |
+
plt.plot(forecast_data['ds'], forecast_data[col],
|
| 106 |
+
color=colors[j % len(colors)],
|
| 107 |
+
linestyle='--',
|
| 108 |
+
linewidth=1.5,
|
| 109 |
+
label=f'{col}')
|
| 110 |
+
|
| 111 |
+
plt.title('Future Forecast', fontsize=16)
|
| 112 |
+
plt.xlabel('Date', fontsize=12)
|
| 113 |
+
plt.ylabel('Value', fontsize=12)
|
| 114 |
+
plt.grid(True, alpha=0.3)
|
| 115 |
+
plt.legend(loc='best')
|
| 116 |
+
plt.tight_layout()
|
| 117 |
+
|
| 118 |
+
# Format date labels better
|
| 119 |
+
fig = plt.gcf()
|
| 120 |
+
ax = plt.gca()
|
| 121 |
+
fig.autofmt_xdate()
|
| 122 |
+
|
| 123 |
+
return fig
|
| 124 |
+
|
| 125 |
+
# Function to export results to CSV
|
| 126 |
+
def export_results(eval_df, cv_results, future_forecasts):
|
| 127 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 128 |
+
|
| 129 |
+
# Create temp directory if it doesn't exist
|
| 130 |
+
temp_dir = tempfile.mkdtemp()
|
| 131 |
+
|
| 132 |
+
result_files = []
|
| 133 |
+
|
| 134 |
+
if eval_df is not None:
|
| 135 |
+
eval_path = os.path.join(temp_dir, f"evaluation_metrics_{timestamp}.csv")
|
| 136 |
+
eval_df.to_csv(eval_path, index=False)
|
| 137 |
+
result_files.append(eval_path)
|
| 138 |
+
|
| 139 |
+
if cv_results is not None:
|
| 140 |
+
cv_path = os.path.join(temp_dir, f"cross_validation_results_{timestamp}.csv")
|
| 141 |
+
cv_results.to_csv(cv_path, index=False)
|
| 142 |
+
result_files.append(cv_path)
|
| 143 |
+
|
| 144 |
+
if future_forecasts is not None:
|
| 145 |
+
forecast_path = os.path.join(temp_dir, f"forecasts_{timestamp}.csv")
|
| 146 |
+
future_forecasts.to_csv(forecast_path, index=False)
|
| 147 |
+
result_files.append(forecast_path)
|
| 148 |
+
|
| 149 |
+
return result_files
|
| 150 |
+
|
| 151 |
+
# Main forecasting logic
|
| 152 |
+
def run_forecast(
|
| 153 |
+
file,
|
| 154 |
+
frequency,
|
| 155 |
+
eval_strategy,
|
| 156 |
+
horizon,
|
| 157 |
+
step_size,
|
| 158 |
+
num_windows,
|
| 159 |
+
use_historical_avg,
|
| 160 |
+
use_naive,
|
| 161 |
+
use_seasonal_naive,
|
| 162 |
+
seasonality,
|
| 163 |
+
use_window_avg,
|
| 164 |
+
window_size,
|
| 165 |
+
use_seasonal_window_avg,
|
| 166 |
+
seasonal_window_size,
|
| 167 |
+
use_autoets,
|
| 168 |
+
use_autoarima,
|
| 169 |
+
use_timegpt,
|
| 170 |
+
finetune_loss,
|
| 171 |
+
confidence_level,
|
| 172 |
+
future_horizon
|
| 173 |
+
):
|
| 174 |
+
df, message = load_data(file)
|
| 175 |
+
if df is None:
|
| 176 |
+
return None, None, None, None, None, None, message
|
| 177 |
+
|
| 178 |
+
# Initialize results
|
| 179 |
+
eval_df = None
|
| 180 |
+
cv_results = None
|
| 181 |
+
future_forecasts = None
|
| 182 |
+
|
| 183 |
+
# Set up traditional statistical models
|
| 184 |
+
models = []
|
| 185 |
+
model_aliases = []
|
| 186 |
+
|
| 187 |
+
if use_historical_avg:
|
| 188 |
+
models.append(HistoricAverage(alias='historical_average'))
|
| 189 |
+
model_aliases.append('historical_average')
|
| 190 |
+
if use_naive:
|
| 191 |
+
models.append(Naive(alias='naive'))
|
| 192 |
+
model_aliases.append('naive')
|
| 193 |
+
if use_seasonal_naive:
|
| 194 |
+
models.append(SeasonalNaive(season_length=seasonality, alias='seasonal_naive'))
|
| 195 |
+
model_aliases.append('seasonal_naive')
|
| 196 |
+
if use_window_avg:
|
| 197 |
+
models.append(WindowAverage(window_size=window_size, alias='window_average'))
|
| 198 |
+
model_aliases.append('window_average')
|
| 199 |
+
if use_seasonal_window_avg:
|
| 200 |
+
models.append(SeasonalWindowAverage(season_length=seasonality, window_size=seasonal_window_size, alias='seasonal_window_average'))
|
| 201 |
+
model_aliases.append('seasonal_window_average')
|
| 202 |
+
if use_autoets:
|
| 203 |
+
models.append(AutoETS(alias='autoets', season_length=seasonality))
|
| 204 |
+
model_aliases.append('autoets')
|
| 205 |
+
if use_autoarima:
|
| 206 |
+
models.append(AutoARIMA(alias='autoarima', season_length=seasonality))
|
| 207 |
+
model_aliases.append('autoarima')
|
| 208 |
+
|
| 209 |
+
if not models and not use_timegpt:
|
| 210 |
+
return None, None, None, None, None, None, "Please select at least one forecasting model"
|
| 211 |
+
|
| 212 |
+
try:
|
| 213 |
+
# Initialize results with empty DataFrames
|
| 214 |
+
combined_eval_df = pd.DataFrame()
|
| 215 |
+
combined_cv_results = pd.DataFrame()
|
| 216 |
+
combined_future_forecasts = pd.DataFrame()
|
| 217 |
+
|
| 218 |
+
# Run traditional statistical models if any are selected
|
| 219 |
+
if models:
|
| 220 |
+
sf = StatsForecast(models=models, freq=frequency, n_jobs=-1)
|
| 221 |
+
|
| 222 |
+
# Run cross-validation for traditional models
|
| 223 |
+
if eval_strategy == "Cross Validation":
|
| 224 |
+
cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
|
| 225 |
+
evaluation = evaluate(df=cv_results, metrics=[bias, mae, rmse, mape], models=model_aliases)
|
| 226 |
+
eval_df = pd.DataFrame(evaluation).reset_index()
|
| 227 |
+
else: # Fixed window
|
| 228 |
+
cv_results = sf.cross_validation(df=df, h=horizon, step_size=10, n_windows=1) # any step size for 1 window
|
| 229 |
+
evaluation = evaluate(df=cv_results, metrics=[bias, mae, rmse, mape], models=model_aliases)
|
| 230 |
+
eval_df = pd.DataFrame(evaluation).reset_index()
|
| 231 |
+
|
| 232 |
+
# Generate future forecasts
|
| 233 |
+
future_forecasts = sf.forecast(df=df, h=future_horizon)
|
| 234 |
+
|
| 235 |
+
# Store results
|
| 236 |
+
combined_eval_df = eval_df.copy() if eval_df is not None else pd.DataFrame()
|
| 237 |
+
combined_cv_results = cv_results.copy() if cv_results is not None else pd.DataFrame()
|
| 238 |
+
combined_future_forecasts = future_forecasts.copy() if future_forecasts is not None else pd.DataFrame()
|
| 239 |
+
|
| 240 |
+
# Run TimeGPT if selected
|
| 241 |
+
if use_timegpt:
|
| 242 |
+
try:
|
| 243 |
+
# Get API key from environment variables
|
| 244 |
+
nixtla_api_key = os.getenv("NIXTLA_API_KEY")
|
| 245 |
+
if not nixtla_api_key:
|
| 246 |
+
return None, None, None, None, None, None, "TimeGPT API key not found. Please set the NIXTLA_API_KEY environment variable."
|
| 247 |
+
|
| 248 |
+
# Initialize Nixtla client
|
| 249 |
+
nixtla_client = NixtlaClient(api_key=nixtla_api_key)
|
| 250 |
+
|
| 251 |
+
# Convert confidence_level to list format
|
| 252 |
+
level = [float(confidence_level)]
|
| 253 |
+
|
| 254 |
+
# Run cross-validation for TimeGPT
|
| 255 |
+
if eval_strategy == "Cross Validation":
|
| 256 |
+
timegpt_cv_df = nixtla_client.cross_validation(
|
| 257 |
+
df=df,
|
| 258 |
+
h=horizon,
|
| 259 |
+
freq=frequency,
|
| 260 |
+
level=level,
|
| 261 |
+
n_windows=num_windows,
|
| 262 |
+
step_size=step_size
|
| 263 |
+
)
|
| 264 |
+
timegpt_cv_eval = evaluate(
|
| 265 |
+
df=timegpt_cv_df,
|
| 266 |
+
metrics=[mape, mae, rmse, bias],
|
| 267 |
+
models=['TimeGPT'],
|
| 268 |
+
level=level
|
| 269 |
+
)
|
| 270 |
+
timegpt_eval_df = pd.DataFrame(timegpt_cv_eval).reset_index()
|
| 271 |
+
else: # Fixed window
|
| 272 |
+
timegpt_cv_df = nixtla_client.cross_validation(
|
| 273 |
+
df=df,
|
| 274 |
+
h=horizon,
|
| 275 |
+
freq=frequency,
|
| 276 |
+
level=level,
|
| 277 |
+
n_windows=1,
|
| 278 |
+
step_size=10
|
| 279 |
+
)
|
| 280 |
+
timegpt_cv_eval = evaluate(
|
| 281 |
+
df=timegpt_cv_df,
|
| 282 |
+
metrics=[mape, mae, rmse, bias],
|
| 283 |
+
models=['TimeGPT'],
|
| 284 |
+
level=level
|
| 285 |
+
)
|
| 286 |
+
timegpt_eval_df = pd.DataFrame(timegpt_cv_eval).reset_index()
|
| 287 |
+
|
| 288 |
+
# Generate future forecasts with TimeGPT
|
| 289 |
+
forecast_timegpt = nixtla_client.forecast(
|
| 290 |
+
df=df,
|
| 291 |
+
h=future_horizon,
|
| 292 |
+
freq=frequency,
|
| 293 |
+
level=level,
|
| 294 |
+
finetune_loss=finetune_loss
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
# Combine results
|
| 298 |
+
if not combined_eval_df.empty and not timegpt_eval_df.empty:
|
| 299 |
+
combined_eval_df = pd.concat([combined_eval_df, timegpt_eval_df], ignore_index=True)
|
| 300 |
+
else:
|
| 301 |
+
combined_eval_df = timegpt_eval_df if not timegpt_eval_df.empty else combined_eval_df
|
| 302 |
+
|
| 303 |
+
if not combined_cv_results.empty and not timegpt_cv_df.empty:
|
| 304 |
+
# Make sure we're not duplicating the 'y' column
|
| 305 |
+
if 'y' in combined_cv_results.columns and 'y' in timegpt_cv_df.columns:
|
| 306 |
+
timegpt_cv_df_no_y = timegpt_cv_df.drop(columns=['y'])
|
| 307 |
+
combined_cv_results = pd.merge(
|
| 308 |
+
combined_cv_results,
|
| 309 |
+
timegpt_cv_df_no_y,
|
| 310 |
+
on=['unique_id', 'ds', 'cutoff'],
|
| 311 |
+
how='outer'
|
| 312 |
+
)
|
| 313 |
+
else:
|
| 314 |
+
combined_cv_results = pd.concat([combined_cv_results, timegpt_cv_df], ignore_index=True)
|
| 315 |
+
else:
|
| 316 |
+
combined_cv_results = timegpt_cv_df if not timegpt_cv_df.empty else combined_cv_results
|
| 317 |
+
|
| 318 |
+
if not combined_future_forecasts.empty and not forecast_timegpt.empty:
|
| 319 |
+
# Make sure we're merging on common columns
|
| 320 |
+
combined_future_forecasts = pd.merge(
|
| 321 |
+
combined_future_forecasts,
|
| 322 |
+
forecast_timegpt,
|
| 323 |
+
on=['unique_id', 'ds'],
|
| 324 |
+
how='outer'
|
| 325 |
+
)
|
| 326 |
+
else:
|
| 327 |
+
combined_future_forecasts = forecast_timegpt if not forecast_timegpt.empty else combined_future_forecasts
|
| 328 |
+
|
| 329 |
+
except Exception as e:
|
| 330 |
+
return None, None, None, None, None, None, f"Error with TimeGPT: {str(e)}"
|
| 331 |
+
|
| 332 |
+
# Create plots
|
| 333 |
+
if not combined_cv_results.empty:
|
| 334 |
+
fig_validation = create_forecast_plot(
|
| 335 |
+
combined_cv_results,
|
| 336 |
+
df,
|
| 337 |
+
f"{eval_strategy} Results"
|
| 338 |
+
)
|
| 339 |
+
else:
|
| 340 |
+
fig_validation = None
|
| 341 |
+
|
| 342 |
+
if not combined_future_forecasts.empty:
|
| 343 |
+
fig_future = create_future_forecast_plot(combined_future_forecasts, df)
|
| 344 |
+
else:
|
| 345 |
+
fig_future = None
|
| 346 |
+
|
| 347 |
+
# Export results
|
| 348 |
+
export_files = export_results(combined_eval_df, combined_cv_results, combined_future_forecasts)
|
| 349 |
+
|
| 350 |
+
return combined_eval_df, combined_cv_results, fig_validation, combined_future_forecasts, fig_future, export_files, "Analysis completed successfully!"
|
| 351 |
+
|
| 352 |
+
except Exception as e:
|
| 353 |
+
return None, None, None, None, None, None, f"Error during forecasting: {str(e)}"
|
| 354 |
+
|
| 355 |
+
# Sample CSV file generation
|
| 356 |
def download_sample():
|
| 357 |
sample_data = """unique_id,ds,y
|
| 358 |
^GSPC,2023-01-03,3824.139892578125
|
|
|
|
| 923 |
temp.close()
|
| 924 |
return temp.name
|
| 925 |
|
| 926 |
+
# Global theme
|
| 927 |
+
theme = gr.themes.Soft(
|
| 928 |
+
primary_hue="blue",
|
| 929 |
+
secondary_hue="indigo",
|
| 930 |
+
neutral_hue="gray"
|
| 931 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 932 |
|
| 933 |
+
# Gradio interface
|
|
|
|
| 934 |
with gr.Blocks(title="Time Series Forecasting App", theme=theme) as app:
|
| 935 |
gr.Markdown("# 📈 Time Series Forecasting App")
|
| 936 |
+
gr.Markdown("Upload a CSV with `unique_id`, `ds`, and `y` columns to apply forecasting models.")
|
| 937 |
+
|
| 938 |
+
# Disclaimer about external predictors
|
| 939 |
+
with gr.Accordion("Disclaimer", open=True):
|
| 940 |
+
gr.Markdown("""
|
| 941 |
+
**Disclaimer:** For simplicity, this app does not allow the use of external predictors.
|
| 942 |
+
However, they can be easily included in the underlying statsforecast (for AutoARIMA)
|
| 943 |
+
and the TimeGPT implementation by Nixtla. To use external predictors, you would need to modify
|
| 944 |
+
the code to include them in your forecasting models.
|
| 945 |
+
""")
|
| 946 |
|
| 947 |
with gr.Row():
|
| 948 |
with gr.Column(scale=2):
|
| 949 |
file_input = gr.File(label="Upload CSV file", file_types=[".csv"])
|
| 950 |
+
|
| 951 |
download_btn = gr.Button("Download Sample Data", variant="secondary")
|
| 952 |
+
download_output = gr.File(label="Click to download", visible=True)
|
| 953 |
download_btn.click(fn=download_sample, outputs=download_output)
|
| 954 |
|
| 955 |
with gr.Accordion("Data & Validation Settings", open=True):
|
| 956 |
frequency = gr.Dropdown(
|
| 957 |
+
choices=[
|
| 958 |
+
("Hourly", "H"),
|
| 959 |
+
("Daily", "D"),
|
| 960 |
+
("Weekly", "WS"),
|
| 961 |
+
("Monthly", "MS"),
|
| 962 |
+
("Quarterly", "QS"),
|
| 963 |
+
("Yearly", "YS")
|
| 964 |
+
],
|
| 965 |
+
label="Data Frequency",
|
| 966 |
+
value="D"
|
| 967 |
)
|
| 968 |
+
|
| 969 |
+
# Evaluation Strategy
|
| 970 |
eval_strategy = gr.Radio(
|
| 971 |
+
choices=["Fixed Window", "Cross Validation"],
|
| 972 |
+
label="Evaluation Strategy",
|
| 973 |
+
value="Cross Validation"
|
| 974 |
)
|
| 975 |
+
|
| 976 |
+
# Fixed Window settings
|
| 977 |
+
with gr.Group(visible=True) as fixed_window_box:
|
| 978 |
+
gr.Markdown("### Fixed Window Settings")
|
| 979 |
+
horizon = gr.Slider(1, 100, value=10, step=1, label="Validation Horizon (steps ahead to predict)")
|
| 980 |
+
|
| 981 |
+
# Cross Validation settings
|
| 982 |
+
with gr.Group(visible=True) as cv_box:
|
| 983 |
+
gr.Markdown("### Cross Validation Settings")
|
| 984 |
+
with gr.Row():
|
| 985 |
+
step_size = gr.Slider(1, 50, value=10, step=1, label="Step Size (distance between windows)")
|
| 986 |
+
num_windows = gr.Slider(1, 20, value=5, step=1, label="Number of Windows")
|
| 987 |
+
|
| 988 |
+
# Future forecast settings (always visible)
|
| 989 |
+
with gr.Group():
|
| 990 |
+
gr.Markdown("### Future Forecast Settings")
|
| 991 |
+
future_horizon = gr.Slider(1, 100, value=10, step=1, label="Future Forecast Horizon (steps to predict)")
|
| 992 |
|
| 993 |
+
with gr.Accordion("Model Configuration", open=True):
|
| 994 |
+
with gr.Tabs() as model_tabs:
|
| 995 |
+
# Traditional Statistical Models Tab
|
| 996 |
+
with gr.TabItem("Statistical Models"):
|
| 997 |
+
gr.Markdown("## Basic Models")
|
| 998 |
+
with gr.Row():
|
| 999 |
+
use_historical_avg = gr.Checkbox(label="Historical Average", value=True)
|
| 1000 |
+
use_naive = gr.Checkbox(label="Naive", value=True)
|
| 1001 |
+
|
| 1002 |
+
# Common seasonality parameter at the top level
|
| 1003 |
+
with gr.Group():
|
| 1004 |
+
gr.Markdown("### Seasonality Configuration")
|
| 1005 |
+
gr.Markdown("This seasonality period affects Seasonal Naive, Seasonal Window Average, AutoETS, and AutoARIMA models")
|
| 1006 |
+
seasonality = gr.Number(label="Seasonality Period", value=5)
|
| 1007 |
+
|
| 1008 |
+
gr.Markdown("### Seasonal Models")
|
| 1009 |
+
with gr.Row():
|
| 1010 |
+
use_seasonal_naive = gr.Checkbox(label="Seasonal Naive", value=True)
|
| 1011 |
+
|
| 1012 |
+
gr.Markdown("### Window-based Models")
|
| 1013 |
+
with gr.Row():
|
| 1014 |
+
use_window_avg = gr.Checkbox(label="Window Average", value=True)
|
| 1015 |
+
window_size = gr.Number(label="Window Size", value=10)
|
| 1016 |
+
|
| 1017 |
+
with gr.Row():
|
| 1018 |
+
use_seasonal_window_avg = gr.Checkbox(label="Seasonal Window Average", value=True)
|
| 1019 |
+
seasonal_window_size = gr.Number(label="Seasonal Window Size", value=2)
|
| 1020 |
+
|
| 1021 |
+
gr.Markdown("### Advanced Models (use seasonality from above)")
|
| 1022 |
+
with gr.Row():
|
| 1023 |
+
use_autoets = gr.Checkbox(label="AutoETS (Exponential Smoothing)", value=True)
|
| 1024 |
+
use_autoarima = gr.Checkbox(label="AutoARIMA", value=True)
|
| 1025 |
+
|
| 1026 |
+
# Transformer Models Tab (TimeGPT)
|
| 1027 |
+
with gr.TabItem("Transformer Models"):
|
| 1028 |
+
gr.Markdown("## TimeGPT Model")
|
| 1029 |
+
gr.Markdown("TimeGPT uses a transformer architecture for state-of-the-art time series forecasting")
|
| 1030 |
+
|
| 1031 |
+
with gr.Row():
|
| 1032 |
+
use_timegpt = gr.Checkbox(label="Use TimeGPT", value=False)
|
| 1033 |
+
|
| 1034 |
+
with gr.Group():
|
| 1035 |
+
gr.Markdown("### TimeGPT Configuration")
|
| 1036 |
+
with gr.Row():
|
| 1037 |
+
finetune_loss = gr.Dropdown(
|
| 1038 |
+
choices=["mape", "mae", "rmse", "smape"],
|
| 1039 |
+
label="Finetune Loss Metric",
|
| 1040 |
+
value="mape"
|
| 1041 |
+
)
|
| 1042 |
+
confidence_level = gr.Slider(50, 99, value=95, step=1, label="Confidence Level (%)")
|
| 1043 |
+
|
| 1044 |
+
gr.Markdown("""
|
| 1045 |
+
**Note:** Using TimeGPT requires a valid API key. The API key should
|
| 1046 |
+
be set as an environment variable named `NIXTLA_API_KEY`. This space uses a trial key, which is rate limited.
|
| 1047 |
+
""")
|
| 1048 |
|
| 1049 |
with gr.Column(scale=3):
|
| 1050 |
+
message_output = gr.Textbox(label="Status Message")
|
| 1051 |
+
|
| 1052 |
+
with gr.Tabs() as tabs:
|
| 1053 |
with gr.TabItem("Validation Results"):
|
| 1054 |
+
eval_output = gr.Dataframe(label="Evaluation Metrics")
|
| 1055 |
validation_plot = gr.Plot(label="Validation Plot")
|
| 1056 |
+
validation_output = gr.Dataframe(label="Validation Data", visible=False)
|
| 1057 |
+
|
| 1058 |
+
with gr.Row():
|
| 1059 |
+
show_data_btn = gr.Button("Show Validation Data")
|
| 1060 |
+
hide_data_btn = gr.Button("Hide Validation Data", visible=False)
|
| 1061 |
+
|
| 1062 |
+
def show_data():
|
| 1063 |
+
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
|
| 1064 |
+
|
| 1065 |
+
def hide_data():
|
| 1066 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
| 1067 |
+
|
| 1068 |
+
show_data_btn.click(
|
| 1069 |
+
fn=show_data,
|
| 1070 |
+
outputs=[validation_output, hide_data_btn, show_data_btn]
|
| 1071 |
+
)
|
| 1072 |
+
|
| 1073 |
+
hide_data_btn.click(
|
| 1074 |
+
fn=hide_data,
|
| 1075 |
+
outputs=[validation_output, hide_data_btn, show_data_btn]
|
| 1076 |
+
)
|
| 1077 |
+
|
| 1078 |
with gr.TabItem("Future Forecast"):
|
|
|
|
| 1079 |
forecast_plot = gr.Plot(label="Future Forecast Plot")
|
| 1080 |
+
forecast_output = gr.Dataframe(label="Future Forecast Data", visible=False)
|
| 1081 |
+
|
| 1082 |
+
with gr.Row():
|
| 1083 |
+
show_forecast_btn = gr.Button("Show Forecast Data")
|
| 1084 |
+
hide_forecast_btn = gr.Button("Hide Forecast Data", visible=False)
|
| 1085 |
+
|
| 1086 |
+
def show_forecast():
|
| 1087 |
+
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
|
| 1088 |
+
|
| 1089 |
+
def hide_forecast():
|
| 1090 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
| 1091 |
+
|
| 1092 |
+
show_forecast_btn.click(
|
| 1093 |
+
fn=show_forecast,
|
| 1094 |
+
outputs=[forecast_output, hide_forecast_btn, show_forecast_btn]
|
| 1095 |
+
)
|
| 1096 |
+
|
| 1097 |
+
hide_forecast_btn.click(
|
| 1098 |
+
fn=hide_forecast,
|
| 1099 |
+
outputs=[forecast_output, hide_forecast_btn, show_forecast_btn]
|
| 1100 |
+
)
|
| 1101 |
+
|
| 1102 |
with gr.TabItem("Export Results"):
|
| 1103 |
export_files = gr.Files(label="Download Results")
|
| 1104 |
|
| 1105 |
+
with gr.Row(visible=True) as run_row:
|
| 1106 |
+
submit_btn = gr.Button("Run Validation and Forecast", variant="primary", size="lg")
|
| 1107 |
+
|
| 1108 |
+
# Update visibility of the appropriate box based on evaluation strategy
|
| 1109 |
+
def update_eval_boxes(strategy):
|
| 1110 |
+
return (gr.update(visible=strategy == "Fixed Window"),
|
| 1111 |
+
gr.update(visible=strategy == "Cross Validation"))
|
| 1112 |
+
|
| 1113 |
+
eval_strategy.change(
|
| 1114 |
+
fn=update_eval_boxes,
|
| 1115 |
+
inputs=[eval_strategy],
|
| 1116 |
+
outputs=[fixed_window_box, cv_box]
|
| 1117 |
+
)
|
| 1118 |
|
| 1119 |
+
# Run forecast when button is clicked
|
| 1120 |
submit_btn.click(
|
| 1121 |
fn=run_forecast,
|
| 1122 |
inputs=[
|
| 1123 |
file_input, frequency, eval_strategy, horizon, step_size, num_windows,
|
| 1124 |
use_historical_avg, use_naive, use_seasonal_naive, seasonality,
|
| 1125 |
use_window_avg, window_size, use_seasonal_window_avg, seasonal_window_size,
|
| 1126 |
+
use_autoets, use_autoarima, use_timegpt, finetune_loss, confidence_level,
|
| 1127 |
+
future_horizon
|
| 1128 |
],
|
| 1129 |
+
outputs=[eval_output, validation_output, validation_plot, forecast_output, forecast_plot, export_files, message_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1130 |
)
|
| 1131 |
|
| 1132 |
if __name__ == "__main__":
|
| 1133 |
+
app.launch(share=False)
|