Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import gradio as gr
|
| 5 |
+
|
| 6 |
+
from statsforecast import StatsForecast
|
| 7 |
+
from statsforecast.models import (
|
| 8 |
+
HistoricalAverage,
|
| 9 |
+
Naive,
|
| 10 |
+
SeasonalNaive,
|
| 11 |
+
WindowAverage,
|
| 12 |
+
SeasonalWindowAverage,
|
| 13 |
+
AutoETS,
|
| 14 |
+
AutoARIMA
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
from utilsforecast.evaluation import evaluate
|
| 18 |
+
import tempfile
|
| 19 |
+
|
| 20 |
+
# Function to load and process the CSV file
|
| 21 |
+
def load_data(file):
|
| 22 |
+
if file is None:
|
| 23 |
+
return None, "Please upload a CSV file"
|
| 24 |
+
|
| 25 |
+
try:
|
| 26 |
+
# Safe read using file-like object
|
| 27 |
+
df = pd.read_csv(file)
|
| 28 |
+
|
| 29 |
+
# Check for required columns
|
| 30 |
+
required_cols = ['unique_id', 'ds', 'y']
|
| 31 |
+
missing_cols = [col for col in required_cols if col not in df.columns]
|
| 32 |
+
|
| 33 |
+
if missing_cols:
|
| 34 |
+
return None, f"Missing required columns: {', '.join(missing_cols)}"
|
| 35 |
+
|
| 36 |
+
# Convert 'ds' to datetime
|
| 37 |
+
df['ds'] = pd.to_datetime(df['ds'])
|
| 38 |
+
|
| 39 |
+
# Sort by date
|
| 40 |
+
df = df.sort_values(['unique_id', 'ds'])
|
| 41 |
+
|
| 42 |
+
return df, "Data loaded successfully!"
|
| 43 |
+
|
| 44 |
+
except Exception as e:
|
| 45 |
+
return None, f"Error loading data: {str(e)}"
|
| 46 |
+
|
| 47 |
+
# Forecasting logic
|
| 48 |
+
def run_forecast(
|
| 49 |
+
file,
|
| 50 |
+
frequency,
|
| 51 |
+
eval_strategy,
|
| 52 |
+
horizon,
|
| 53 |
+
step_size,
|
| 54 |
+
num_windows,
|
| 55 |
+
use_historical_avg,
|
| 56 |
+
use_naive,
|
| 57 |
+
use_seasonal_naive,
|
| 58 |
+
seasonality,
|
| 59 |
+
use_window_avg,
|
| 60 |
+
window_size,
|
| 61 |
+
use_seasonal_window_avg,
|
| 62 |
+
seasonal_window_size,
|
| 63 |
+
use_autoets,
|
| 64 |
+
use_autoarima
|
| 65 |
+
):
|
| 66 |
+
df, message = load_data(file)
|
| 67 |
+
if df is None:
|
| 68 |
+
return None, None, None, message
|
| 69 |
+
|
| 70 |
+
models = []
|
| 71 |
+
|
| 72 |
+
if use_historical_avg:
|
| 73 |
+
models.append(HistoricalAverage(alias='historical_average'))
|
| 74 |
+
if use_naive:
|
| 75 |
+
models.append(Naive(alias='naive'))
|
| 76 |
+
if use_seasonal_naive:
|
| 77 |
+
models.append(SeasonalNaive(m=seasonality, alias='seasonal_naive'))
|
| 78 |
+
if use_window_avg:
|
| 79 |
+
models.append(WindowAverage(window_size=window_size, alias='window_average'))
|
| 80 |
+
if use_seasonal_window_avg:
|
| 81 |
+
models.append(SeasonalWindowAverage(m=seasonality, window_size=seasonal_window_size, alias='seasonal_window_average'))
|
| 82 |
+
if use_autoets:
|
| 83 |
+
models.append(AutoETS(alias='autoets'))
|
| 84 |
+
if use_autoarima:
|
| 85 |
+
models.append(AutoARIMA(alias='autoarima'))
|
| 86 |
+
|
| 87 |
+
if not models:
|
| 88 |
+
return None, None, None, "Please select at least one forecasting model"
|
| 89 |
+
|
| 90 |
+
sf = StatsForecast(models=models, freq=frequency, n_jobs=-1)
|
| 91 |
+
|
| 92 |
+
try:
|
| 93 |
+
if eval_strategy == "Cross Validation":
|
| 94 |
+
cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
|
| 95 |
+
evaluation = evaluate(cv_results, df, metrics=['me', 'mae', 'rmse', 'mape'])
|
| 96 |
+
eval_df = pd.DataFrame(evaluation).reset_index()
|
| 97 |
+
fig_forecast = create_forecast_plot(cv_results, df)
|
| 98 |
+
return eval_df, cv_results, fig_forecast, "Cross validation completed successfully!"
|
| 99 |
+
else:
|
| 100 |
+
train_size = len(df) - horizon
|
| 101 |
+
if train_size <= 0:
|
| 102 |
+
return None, None, None, f"Not enough data for horizon={horizon}"
|
| 103 |
+
|
| 104 |
+
train_df = df.iloc[:train_size]
|
| 105 |
+
test_df = df.iloc[train_size:]
|
| 106 |
+
sf.fit(train_df)
|
| 107 |
+
forecast = sf.predict(h=horizon)
|
| 108 |
+
evaluation = evaluate(forecast, test_df, metrics=['me', 'mae', 'rmse', 'mape'])
|
| 109 |
+
eval_df = pd.DataFrame(evaluation).reset_index()
|
| 110 |
+
fig_forecast = create_forecast_plot(forecast, df)
|
| 111 |
+
return eval_df, forecast, fig_forecast, "Fixed window evaluation completed successfully!"
|
| 112 |
+
|
| 113 |
+
except Exception as e:
|
| 114 |
+
return None, None, None, f"Error during forecasting: {str(e)}"
|
| 115 |
+
|
| 116 |
+
# Forecast plot
|
| 117 |
+
def create_forecast_plot(forecast_df, original_df):
|
| 118 |
+
plt.figure(figsize=(10, 6))
|
| 119 |
+
unique_ids = forecast_df['unique_id'].unique()
|
| 120 |
+
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds']]
|
| 121 |
+
|
| 122 |
+
for unique_id in unique_ids:
|
| 123 |
+
original_data = original_df[original_df['unique_id'] == unique_id]
|
| 124 |
+
plt.plot(original_data['ds'], original_data['y'], 'k-', label='Actual')
|
| 125 |
+
forecast_data = forecast_df[forecast_df['unique_id'] == unique_id]
|
| 126 |
+
for col in forecast_cols:
|
| 127 |
+
if col in forecast_data.columns:
|
| 128 |
+
plt.plot(forecast_data['ds'], forecast_data[col], label=col)
|
| 129 |
+
|
| 130 |
+
plt.title('Forecasting Results')
|
| 131 |
+
plt.xlabel('Date')
|
| 132 |
+
plt.ylabel('Value')
|
| 133 |
+
plt.legend()
|
| 134 |
+
plt.grid(True)
|
| 135 |
+
fig = plt.gcf()
|
| 136 |
+
return fig
|
| 137 |
+
|
| 138 |
+
# Download sample file (placeholder path)
|
| 139 |
+
def download_sample():
|
| 140 |
+
return "sample_data.csv"
|
| 141 |
+
|
| 142 |
+
# Gradio UI
|
| 143 |
+
with gr.Blocks(title="StatsForecast Demo") as app:
|
| 144 |
+
gr.Markdown("# 📈 StatsForecast Demo App")
|
| 145 |
+
gr.Markdown("Upload a CSV with `unique_id`, `ds`, `y` columns and configure forecasting models.")
|
| 146 |
+
|
| 147 |
+
with gr.Row():
|
| 148 |
+
with gr.Column(scale=2):
|
| 149 |
+
file_input = gr.File(label="Upload CSV file", file_types=[".csv"])
|
| 150 |
+
download_btn = gr.Button("Download Sample Data")
|
| 151 |
+
download_output = gr.File(interactive=False, label="Sample Data", visible=False)
|
| 152 |
+
download_btn.click(fn=download_sample, outputs=download_output)
|
| 153 |
+
|
| 154 |
+
frequency = gr.Dropdown(
|
| 155 |
+
choices=["H", "D", "WS", "MS", "QS", "YS"],
|
| 156 |
+
label="Frequency",
|
| 157 |
+
value="D"
|
| 158 |
+
)
|
| 159 |
+
eval_strategy = gr.Radio(
|
| 160 |
+
choices=["Fixed Window", "Cross Validation"],
|
| 161 |
+
label="Evaluation Strategy",
|
| 162 |
+
value="Cross Validation"
|
| 163 |
+
)
|
| 164 |
+
horizon = gr.Slider(1, 100, value=14, label="Horizon")
|
| 165 |
+
step_size = gr.Slider(1, 50, value=5, label="Step Size")
|
| 166 |
+
num_windows = gr.Slider(1, 20, value=3, label="Number of Windows")
|
| 167 |
+
|
| 168 |
+
gr.Markdown("### Model Configuration")
|
| 169 |
+
use_historical_avg = gr.Checkbox(label="Use Historical Average", value=True)
|
| 170 |
+
use_naive = gr.Checkbox(label="Use Naive", value=True)
|
| 171 |
+
use_seasonal_naive = gr.Checkbox(label="Use Seasonal Naive")
|
| 172 |
+
seasonality = gr.Number(label="Seasonality", value=7)
|
| 173 |
+
use_window_avg = gr.Checkbox(label="Use Window Average")
|
| 174 |
+
window_size = gr.Number(label="Window Size", value=3)
|
| 175 |
+
use_seasonal_window_avg = gr.Checkbox(label="Use Seasonal Window Average")
|
| 176 |
+
seasonal_window_size = gr.Number(label="Seasonal Window Size", value=2)
|
| 177 |
+
use_autoets = gr.Checkbox(label="Use AutoETS")
|
| 178 |
+
use_autoarima = gr.Checkbox(label="Use AutoARIMA")
|
| 179 |
+
|
| 180 |
+
submit_btn = gr.Button("Run Forecast")
|
| 181 |
+
|
| 182 |
+
with gr.Column(scale=3):
|
| 183 |
+
eval_output = gr.Dataframe(label="Evaluation Results")
|
| 184 |
+
forecast_output = gr.Dataframe(label="Forecast Data")
|
| 185 |
+
plot_output = gr.Plot(label="Forecast Plot")
|
| 186 |
+
message_output = gr.Textbox(label="Message")
|
| 187 |
+
|
| 188 |
+
submit_btn.click(
|
| 189 |
+
fn=run_forecast,
|
| 190 |
+
inputs=[
|
| 191 |
+
file_input, frequency, eval_strategy, horizon, step_size, num_windows,
|
| 192 |
+
use_historical_avg, use_naive, use_seasonal_naive, seasonality,
|
| 193 |
+
use_window_avg, window_size, use_seasonal_window_avg, seasonal_window_size,
|
| 194 |
+
use_autoets, use_autoarima
|
| 195 |
+
],
|
| 196 |
+
outputs=[eval_output, forecast_output, plot_output, message_output]
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
if __name__ == "__main__":
|
| 200 |
+
app.launch()
|