Spaces:
Running
Running
Fix some bugs to allow multiple window plotting
Browse files
app.py
CHANGED
|
@@ -15,9 +15,10 @@ from statsforecast.models import (
|
|
| 15 |
)
|
| 16 |
|
| 17 |
from utilsforecast.evaluation import evaluate
|
| 18 |
-
from utilsforecast.losses import *
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
# Function to load and process uploaded CSV
|
| 21 |
def load_data(file):
|
| 22 |
if file is None:
|
| 23 |
return None, "Please upload a CSV file"
|
|
@@ -33,7 +34,6 @@ def load_data(file):
|
|
| 33 |
except Exception as e:
|
| 34 |
return None, f"Error loading data: {str(e)}"
|
| 35 |
|
| 36 |
-
# Function to generate and return a plot for a specific cross-validation window
|
| 37 |
def create_forecast_plot(forecast_df, original_df, window=None):
|
| 38 |
plt.figure(figsize=(10, 6))
|
| 39 |
unique_ids = forecast_df['unique_id'].unique()
|
|
@@ -55,10 +55,8 @@ def create_forecast_plot(forecast_df, original_df, window=None):
|
|
| 55 |
plt.ylabel('Value')
|
| 56 |
plt.legend()
|
| 57 |
plt.grid(True)
|
| 58 |
-
|
| 59 |
-
return fig
|
| 60 |
|
| 61 |
-
# Main forecasting logic
|
| 62 |
def run_forecast(
|
| 63 |
file,
|
| 64 |
frequency,
|
|
@@ -114,13 +112,21 @@ def run_forecast(
|
|
| 114 |
try:
|
| 115 |
if eval_strategy == "Cross Validation":
|
| 116 |
cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
evaluation = evaluate(df=cv_results, metrics=[bias, mae, rmse, mape], models=model_aliases)
|
| 118 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
|
|
|
|
|
|
| 119 |
unique_cutoffs = sorted(str(c) for c in cv_results['cutoff'].unique())
|
| 120 |
-
fig_forecast = create_forecast_plot(cv_results, df, window=unique_cutoffs[0])
|
|
|
|
| 121 |
return eval_df, cv_results, fig_forecast, "Cross validation completed successfully!", unique_cutoffs
|
| 122 |
|
| 123 |
-
else:
|
| 124 |
train_size = len(df) - horizon
|
| 125 |
if train_size <= 0:
|
| 126 |
return None, None, None, f"Not enough data for horizon={horizon}", []
|
|
@@ -137,7 +143,13 @@ def run_forecast(
|
|
| 137 |
except Exception as e:
|
| 138 |
return None, None, None, f"Error during forecasting: {str(e)}", []
|
| 139 |
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
def download_sample():
|
| 142 |
sample_data = """unique_id,ds,y
|
| 143 |
series1,2023-01-01,100
|
|
@@ -161,7 +173,6 @@ series1,2023-01-15,131
|
|
| 161 |
temp.close()
|
| 162 |
return temp.name
|
| 163 |
|
| 164 |
-
# Gradio interface
|
| 165 |
with gr.Blocks(title="StatsForecast Demo") as app:
|
| 166 |
gr.Markdown("# 📈 StatsForecast Demo App")
|
| 167 |
gr.Markdown("Upload a CSV with `unique_id`, `ds`, and `y` columns to apply forecasting models.")
|
|
@@ -169,25 +180,23 @@ with gr.Blocks(title="StatsForecast Demo") as app:
|
|
| 169 |
with gr.Row():
|
| 170 |
with gr.Column(scale=2):
|
| 171 |
file_input = gr.File(label="Upload CSV file", file_types=[".csv"])
|
| 172 |
-
|
| 173 |
download_btn = gr.Button("Download Sample Data")
|
| 174 |
download_output = gr.File(label="Click to download", visible=True)
|
| 175 |
download_btn.click(fn=download_sample, outputs=download_output)
|
| 176 |
|
| 177 |
frequency = gr.Dropdown(choices=["H", "D", "WS", "MS", "QS", "YS"], label="Frequency", value="D")
|
| 178 |
eval_strategy = gr.Radio(choices=["Fixed Window", "Cross Validation"], label="Evaluation Strategy", value="Cross Validation")
|
| 179 |
-
horizon = gr.Slider(1, 100, value=
|
| 180 |
step_size = gr.Slider(1, 50, value=5, step=1, label="Step Size")
|
| 181 |
num_windows = gr.Slider(1, 20, value=3, step=1, label="Number of Windows")
|
| 182 |
|
| 183 |
-
|
| 184 |
gr.Markdown("### Model Configuration")
|
| 185 |
use_historical_avg = gr.Checkbox(label="Use Historical Average", value=True)
|
| 186 |
use_naive = gr.Checkbox(label="Use Naive", value=True)
|
| 187 |
use_seasonal_naive = gr.Checkbox(label="Use Seasonal Naive")
|
| 188 |
-
seasonality = gr.Number(label="Seasonality", value=
|
| 189 |
use_window_avg = gr.Checkbox(label="Use Window Average")
|
| 190 |
-
window_size = gr.Number(label="Window Size", value=
|
| 191 |
use_seasonal_window_avg = gr.Checkbox(label="Use Seasonal Window Average")
|
| 192 |
seasonal_window_size = gr.Number(label="Seasonal Window Size", value=2)
|
| 193 |
use_autoets = gr.Checkbox(label="Use AutoETS")
|
|
@@ -210,10 +219,12 @@ with gr.Blocks(title="StatsForecast Demo") as app:
|
|
| 210 |
use_window_avg, window_size, use_seasonal_window_avg, seasonal_window_size,
|
| 211 |
use_autoets, use_autoarima
|
| 212 |
],
|
| 213 |
-
outputs=[
|
|
|
|
|
|
|
| 214 |
)
|
| 215 |
|
| 216 |
-
window_selector.change(fn=
|
| 217 |
|
| 218 |
if __name__ == "__main__":
|
| 219 |
app.launch(share=False)
|
|
|
|
| 15 |
)
|
| 16 |
|
| 17 |
from utilsforecast.evaluation import evaluate
|
| 18 |
+
from utilsforecast.losses import *
|
| 19 |
+
|
| 20 |
+
forecast_store = {} # for storing CV results globally
|
| 21 |
|
|
|
|
| 22 |
def load_data(file):
|
| 23 |
if file is None:
|
| 24 |
return None, "Please upload a CSV file"
|
|
|
|
| 34 |
except Exception as e:
|
| 35 |
return None, f"Error loading data: {str(e)}"
|
| 36 |
|
|
|
|
| 37 |
def create_forecast_plot(forecast_df, original_df, window=None):
|
| 38 |
plt.figure(figsize=(10, 6))
|
| 39 |
unique_ids = forecast_df['unique_id'].unique()
|
|
|
|
| 55 |
plt.ylabel('Value')
|
| 56 |
plt.legend()
|
| 57 |
plt.grid(True)
|
| 58 |
+
return plt.gcf()
|
|
|
|
| 59 |
|
|
|
|
| 60 |
def run_forecast(
|
| 61 |
file,
|
| 62 |
frequency,
|
|
|
|
| 112 |
try:
|
| 113 |
if eval_strategy == "Cross Validation":
|
| 114 |
cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
|
| 115 |
+
|
| 116 |
+
# Store for dropdown selection
|
| 117 |
+
forecast_store['forecast'] = cv_results
|
| 118 |
+
forecast_store['original'] = df
|
| 119 |
+
|
| 120 |
evaluation = evaluate(df=cv_results, metrics=[bias, mae, rmse, mape], models=model_aliases)
|
| 121 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
| 122 |
+
|
| 123 |
+
# Dropdown cutoffs
|
| 124 |
unique_cutoffs = sorted(str(c) for c in cv_results['cutoff'].unique())
|
| 125 |
+
fig_forecast = create_forecast_plot(cv_results, df, window=pd.to_datetime(unique_cutoffs[0]))
|
| 126 |
+
|
| 127 |
return eval_df, cv_results, fig_forecast, "Cross validation completed successfully!", unique_cutoffs
|
| 128 |
|
| 129 |
+
else:
|
| 130 |
train_size = len(df) - horizon
|
| 131 |
if train_size <= 0:
|
| 132 |
return None, None, None, f"Not enough data for horizon={horizon}", []
|
|
|
|
| 143 |
except Exception as e:
|
| 144 |
return None, None, None, f"Error during forecasting: {str(e)}", []
|
| 145 |
|
| 146 |
+
def update_window_plot(window_str):
|
| 147 |
+
if 'forecast' not in forecast_store:
|
| 148 |
+
return None
|
| 149 |
+
forecast_df = forecast_store['forecast']
|
| 150 |
+
original_df = forecast_store['original']
|
| 151 |
+
return create_forecast_plot(forecast_df, original_df, window=pd.to_datetime(window_str))
|
| 152 |
+
|
| 153 |
def download_sample():
|
| 154 |
sample_data = """unique_id,ds,y
|
| 155 |
series1,2023-01-01,100
|
|
|
|
| 173 |
temp.close()
|
| 174 |
return temp.name
|
| 175 |
|
|
|
|
| 176 |
with gr.Blocks(title="StatsForecast Demo") as app:
|
| 177 |
gr.Markdown("# 📈 StatsForecast Demo App")
|
| 178 |
gr.Markdown("Upload a CSV with `unique_id`, `ds`, and `y` columns to apply forecasting models.")
|
|
|
|
| 180 |
with gr.Row():
|
| 181 |
with gr.Column(scale=2):
|
| 182 |
file_input = gr.File(label="Upload CSV file", file_types=[".csv"])
|
|
|
|
| 183 |
download_btn = gr.Button("Download Sample Data")
|
| 184 |
download_output = gr.File(label="Click to download", visible=True)
|
| 185 |
download_btn.click(fn=download_sample, outputs=download_output)
|
| 186 |
|
| 187 |
frequency = gr.Dropdown(choices=["H", "D", "WS", "MS", "QS", "YS"], label="Frequency", value="D")
|
| 188 |
eval_strategy = gr.Radio(choices=["Fixed Window", "Cross Validation"], label="Evaluation Strategy", value="Cross Validation")
|
| 189 |
+
horizon = gr.Slider(1, 100, value=10, step=1, label="Horizon")
|
| 190 |
step_size = gr.Slider(1, 50, value=5, step=1, label="Step Size")
|
| 191 |
num_windows = gr.Slider(1, 20, value=3, step=1, label="Number of Windows")
|
| 192 |
|
|
|
|
| 193 |
gr.Markdown("### Model Configuration")
|
| 194 |
use_historical_avg = gr.Checkbox(label="Use Historical Average", value=True)
|
| 195 |
use_naive = gr.Checkbox(label="Use Naive", value=True)
|
| 196 |
use_seasonal_naive = gr.Checkbox(label="Use Seasonal Naive")
|
| 197 |
+
seasonality = gr.Number(label="Seasonality", value=5)
|
| 198 |
use_window_avg = gr.Checkbox(label="Use Window Average")
|
| 199 |
+
window_size = gr.Number(label="Window Size", value=10)
|
| 200 |
use_seasonal_window_avg = gr.Checkbox(label="Use Seasonal Window Average")
|
| 201 |
seasonal_window_size = gr.Number(label="Seasonal Window Size", value=2)
|
| 202 |
use_autoets = gr.Checkbox(label="Use AutoETS")
|
|
|
|
| 219 |
use_window_avg, window_size, use_seasonal_window_avg, seasonal_window_size,
|
| 220 |
use_autoets, use_autoarima
|
| 221 |
],
|
| 222 |
+
outputs=[
|
| 223 |
+
eval_output, forecast_output, plot_output, message_output, window_selector
|
| 224 |
+
]
|
| 225 |
)
|
| 226 |
|
| 227 |
+
window_selector.change(fn=update_window_plot, inputs=window_selector, outputs=plot_output)
|
| 228 |
|
| 229 |
if __name__ == "__main__":
|
| 230 |
app.launch(share=False)
|