Spaces:
Running
Running
first attempt to include timegpt
Browse files
app.py
CHANGED
|
@@ -18,213 +18,15 @@ from statsforecast.models import (
|
|
| 18 |
|
| 19 |
from utilsforecast.evaluation import evaluate
|
| 20 |
from utilsforecast.losses import *
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
def load_data(file):
|
| 24 |
-
if file is None:
|
| 25 |
-
return None, "Please upload a CSV file"
|
| 26 |
-
try:
|
| 27 |
-
df = pd.read_csv(file)
|
| 28 |
-
required_cols = ['unique_id', 'ds', 'y']
|
| 29 |
-
missing_cols = [col for col in required_cols if col not in df.columns]
|
| 30 |
-
if missing_cols:
|
| 31 |
-
return None, f"Missing required columns: {', '.join(missing_cols)}"
|
| 32 |
-
|
| 33 |
-
df['ds'] = pd.to_datetime(df['ds'])
|
| 34 |
-
df = df.sort_values(['unique_id', 'ds']).reset_index(drop=True)
|
| 35 |
-
|
| 36 |
-
# Check for NaN values
|
| 37 |
-
if df['y'].isna().any():
|
| 38 |
-
return None, "Data contains missing values in the 'y' column"
|
| 39 |
-
|
| 40 |
-
return df, "Data loaded successfully!"
|
| 41 |
-
except Exception as e:
|
| 42 |
-
return None, f"Error loading data: {str(e)}"
|
| 43 |
-
|
| 44 |
-
# Function to generate and return a plot
|
| 45 |
-
def create_forecast_plot(forecast_df, original_df, title="Forecasting Results"):
|
| 46 |
-
plt.figure(figsize=(12, 7))
|
| 47 |
-
unique_ids = forecast_df['unique_id'].unique()
|
| 48 |
-
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds', 'cutoff']]
|
| 49 |
-
|
| 50 |
-
colors = plt.cm.tab10.colors
|
| 51 |
-
|
| 52 |
-
for i, unique_id in enumerate(unique_ids):
|
| 53 |
-
original_data = original_df[original_df['unique_id'] == unique_id]
|
| 54 |
-
plt.plot(original_data['ds'], original_data['y'], 'k-', linewidth=2, label=f'{unique_id} (Actual)')
|
| 55 |
-
|
| 56 |
-
forecast_data = forecast_df[forecast_df['unique_id'] == unique_id]
|
| 57 |
-
for j, col in enumerate(forecast_cols):
|
| 58 |
-
if col in forecast_data.columns:
|
| 59 |
-
plt.plot(forecast_data['ds'], forecast_data[col],
|
| 60 |
-
color=colors[j % len(colors)],
|
| 61 |
-
linestyle='--',
|
| 62 |
-
linewidth=1.5,
|
| 63 |
-
label=f'{col}')
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
plt.grid(True, alpha=0.3)
|
| 69 |
-
plt.legend(loc='best')
|
| 70 |
-
plt.tight_layout()
|
| 71 |
-
|
| 72 |
-
# Format date labels better
|
| 73 |
-
fig = plt.gcf()
|
| 74 |
-
ax = plt.gca()
|
| 75 |
-
fig.autofmt_xdate()
|
| 76 |
-
|
| 77 |
-
return fig
|
| 78 |
|
| 79 |
-
#
|
| 80 |
-
def create_future_forecast_plot(forecast_df, original_df):
|
| 81 |
-
plt.figure(figsize=(12, 7))
|
| 82 |
-
unique_ids = forecast_df['unique_id'].unique()
|
| 83 |
-
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds']]
|
| 84 |
-
|
| 85 |
-
colors = plt.cm.tab10.colors
|
| 86 |
-
|
| 87 |
-
for i, unique_id in enumerate(unique_ids):
|
| 88 |
-
# Plot historical data
|
| 89 |
-
original_data = original_df[original_df['unique_id'] == unique_id]
|
| 90 |
-
plt.plot(original_data['ds'], original_data['y'], 'k-', linewidth=2, label=f'{unique_id} (Historical)')
|
| 91 |
-
|
| 92 |
-
# Plot forecast data with shaded vertical line separator
|
| 93 |
-
forecast_data = forecast_df[forecast_df['unique_id'] == unique_id]
|
| 94 |
-
|
| 95 |
-
# Add vertical line at the forecast start
|
| 96 |
-
if not forecast_data.empty and not original_data.empty:
|
| 97 |
-
forecast_start = forecast_data['ds'].min()
|
| 98 |
-
plt.axvline(x=forecast_start, color='gray', linestyle='--', alpha=0.5)
|
| 99 |
-
|
| 100 |
-
for j, col in enumerate(forecast_cols):
|
| 101 |
-
if col in forecast_data.columns:
|
| 102 |
-
plt.plot(forecast_data['ds'], forecast_data[col],
|
| 103 |
-
color=colors[j % len(colors)],
|
| 104 |
-
linestyle='--',
|
| 105 |
-
linewidth=1.5,
|
| 106 |
-
label=f'{col}')
|
| 107 |
-
|
| 108 |
-
plt.title('Future Forecast', fontsize=16)
|
| 109 |
-
plt.xlabel('Date', fontsize=12)
|
| 110 |
-
plt.ylabel('Value', fontsize=12)
|
| 111 |
-
plt.grid(True, alpha=0.3)
|
| 112 |
-
plt.legend(loc='best')
|
| 113 |
-
plt.tight_layout()
|
| 114 |
-
|
| 115 |
-
# Format date labels better
|
| 116 |
-
fig = plt.gcf()
|
| 117 |
-
ax = plt.gca()
|
| 118 |
-
fig.autofmt_xdate()
|
| 119 |
-
|
| 120 |
-
return fig
|
| 121 |
-
|
| 122 |
-
# Function to export results to CSV
|
| 123 |
-
def export_results(eval_df, cv_results, future_forecasts):
|
| 124 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 125 |
-
|
| 126 |
-
# Create temp directory if it doesn't exist
|
| 127 |
-
temp_dir = tempfile.mkdtemp()
|
| 128 |
-
|
| 129 |
-
result_files = []
|
| 130 |
-
|
| 131 |
-
if eval_df is not None:
|
| 132 |
-
eval_path = os.path.join(temp_dir, f"evaluation_metrics_{timestamp}.csv")
|
| 133 |
-
eval_df.to_csv(eval_path, index=False)
|
| 134 |
-
result_files.append(eval_path)
|
| 135 |
-
|
| 136 |
-
if cv_results is not None:
|
| 137 |
-
cv_path = os.path.join(temp_dir, f"cross_validation_results_{timestamp}.csv")
|
| 138 |
-
cv_results.to_csv(cv_path, index=False)
|
| 139 |
-
result_files.append(cv_path)
|
| 140 |
-
|
| 141 |
-
if future_forecasts is not None:
|
| 142 |
-
forecast_path = os.path.join(temp_dir, f"forecasts_{timestamp}.csv")
|
| 143 |
-
future_forecasts.to_csv(forecast_path, index=False)
|
| 144 |
-
result_files.append(forecast_path)
|
| 145 |
-
|
| 146 |
-
return result_files
|
| 147 |
-
|
| 148 |
-
# Main forecasting logic
|
| 149 |
-
def run_forecast(
|
| 150 |
-
file,
|
| 151 |
-
frequency,
|
| 152 |
-
eval_strategy,
|
| 153 |
-
horizon,
|
| 154 |
-
step_size,
|
| 155 |
-
num_windows,
|
| 156 |
-
use_historical_avg,
|
| 157 |
-
use_naive,
|
| 158 |
-
use_seasonal_naive,
|
| 159 |
-
seasonality,
|
| 160 |
-
use_window_avg,
|
| 161 |
-
window_size,
|
| 162 |
-
use_seasonal_window_avg,
|
| 163 |
-
seasonal_window_size,
|
| 164 |
-
use_autoets,
|
| 165 |
-
use_autoarima,
|
| 166 |
-
future_horizon
|
| 167 |
-
):
|
| 168 |
-
df, message = load_data(file)
|
| 169 |
-
if df is None:
|
| 170 |
-
return None, None, None, None, None, None, message
|
| 171 |
-
|
| 172 |
-
models = []
|
| 173 |
-
model_aliases = []
|
| 174 |
-
|
| 175 |
-
if use_historical_avg:
|
| 176 |
-
models.append(HistoricAverage(alias='historical_average'))
|
| 177 |
-
model_aliases.append('historical_average')
|
| 178 |
-
if use_naive:
|
| 179 |
-
models.append(Naive(alias='naive'))
|
| 180 |
-
model_aliases.append('naive')
|
| 181 |
-
if use_seasonal_naive:
|
| 182 |
-
models.append(SeasonalNaive(season_length=seasonality, alias='seasonal_naive'))
|
| 183 |
-
model_aliases.append('seasonal_naive')
|
| 184 |
-
if use_window_avg:
|
| 185 |
-
models.append(WindowAverage(window_size=window_size, alias='window_average'))
|
| 186 |
-
model_aliases.append('window_average')
|
| 187 |
-
if use_seasonal_window_avg:
|
| 188 |
-
models.append(SeasonalWindowAverage(season_length=seasonality, window_size=seasonal_window_size, alias='seasonal_window_average'))
|
| 189 |
-
model_aliases.append('seasonal_window_average')
|
| 190 |
-
if use_autoets:
|
| 191 |
-
models.append(AutoETS(alias='autoets', season_length=seasonality))
|
| 192 |
-
model_aliases.append('autoets')
|
| 193 |
-
if use_autoarima:
|
| 194 |
-
models.append(AutoARIMA(alias='autoarima', season_length=seasonality))
|
| 195 |
-
model_aliases.append('autoarima')
|
| 196 |
-
|
| 197 |
-
if not models:
|
| 198 |
-
return None, None, None, None, None, None, "Please select at least one forecasting model"
|
| 199 |
-
|
| 200 |
-
sf = StatsForecast(models=models, freq=frequency, n_jobs=-1)
|
| 201 |
-
|
| 202 |
-
try:
|
| 203 |
-
# Run cross-validation
|
| 204 |
-
if eval_strategy == "Cross Validation":
|
| 205 |
-
cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
|
| 206 |
-
evaluation = evaluate(df=cv_results, metrics=[bias, mae, rmse, mape], models=model_aliases)
|
| 207 |
-
eval_df = pd.DataFrame(evaluation).reset_index()
|
| 208 |
-
fig_validation = create_forecast_plot(cv_results, df, "Cross Validation Results")
|
| 209 |
-
else: # Fixed window
|
| 210 |
-
cv_results = sf.cross_validation(df=df, h=horizon, step_size=10, n_windows=1) # any step size for 1 window
|
| 211 |
-
evaluation = evaluate(df=cv_results, metrics=[bias, mae, rmse, mape], models=model_aliases)
|
| 212 |
-
eval_df = pd.DataFrame(evaluation).reset_index()
|
| 213 |
-
fig_validation = create_forecast_plot(cv_results, df, "Fixed Window Validation Results")
|
| 214 |
-
|
| 215 |
-
# Generate future forecasts
|
| 216 |
-
future_forecasts = sf.forecast(df=df, h=future_horizon)
|
| 217 |
-
fig_future = create_future_forecast_plot(future_forecasts, df)
|
| 218 |
-
|
| 219 |
-
# Export results
|
| 220 |
-
export_files = export_results(eval_df, cv_results, future_forecasts)
|
| 221 |
-
|
| 222 |
-
return eval_df, cv_results, fig_validation, future_forecasts, fig_future, export_files, "Analysis completed successfully!"
|
| 223 |
-
|
| 224 |
-
except Exception as e:
|
| 225 |
-
return None, None, None, None, None, None, f"Error during forecasting: {str(e)}"
|
| 226 |
-
|
| 227 |
-
# Sample CSV file generation
|
| 228 |
def download_sample():
|
| 229 |
sample_data = """unique_id,ds,y
|
| 230 |
^GSPC,2023-01-03,3824.139892578125
|
|
@@ -795,175 +597,224 @@ def download_sample():
|
|
| 795 |
temp.close()
|
| 796 |
return temp.name
|
| 797 |
|
| 798 |
-
#
|
| 799 |
-
|
| 800 |
-
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 804 |
|
| 805 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 806 |
with gr.Blocks(title="Time Series Forecasting App", theme=theme) as app:
|
| 807 |
gr.Markdown("# 📈 Time Series Forecasting App")
|
| 808 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
| 809 |
|
| 810 |
with gr.Row():
|
| 811 |
with gr.Column(scale=2):
|
| 812 |
file_input = gr.File(label="Upload CSV file", file_types=[".csv"])
|
| 813 |
-
|
| 814 |
download_btn = gr.Button("Download Sample Data", variant="secondary")
|
| 815 |
-
download_output = gr.File(label="
|
| 816 |
download_btn.click(fn=download_sample, outputs=download_output)
|
| 817 |
|
| 818 |
with gr.Accordion("Data & Validation Settings", open=True):
|
| 819 |
frequency = gr.Dropdown(
|
| 820 |
-
choices=[
|
| 821 |
-
("Hourly", "H"),
|
| 822 |
-
("Daily", "D"),
|
| 823 |
-
("Weekly", "WS"),
|
| 824 |
-
("Monthly", "MS"),
|
| 825 |
-
("Quarterly", "QS"),
|
| 826 |
-
("Yearly", "YS")
|
| 827 |
-
],
|
| 828 |
-
label="Data Frequency",
|
| 829 |
-
value="D"
|
| 830 |
)
|
| 831 |
-
|
| 832 |
-
# Evaluation Strategy
|
| 833 |
eval_strategy = gr.Radio(
|
| 834 |
-
choices=["
|
| 835 |
-
|
| 836 |
-
|
| 837 |
)
|
| 838 |
-
|
| 839 |
-
|
| 840 |
-
|
| 841 |
-
|
| 842 |
-
|
| 843 |
-
|
| 844 |
-
|
| 845 |
-
|
| 846 |
-
|
| 847 |
-
|
| 848 |
-
|
| 849 |
-
|
| 850 |
-
|
| 851 |
-
|
| 852 |
-
|
| 853 |
-
|
| 854 |
-
|
| 855 |
|
| 856 |
-
|
| 857 |
-
gr.Markdown("## Basic Models")
|
| 858 |
-
with gr.Row():
|
| 859 |
-
use_historical_avg = gr.Checkbox(label="Historical Average", value=True)
|
| 860 |
-
use_naive = gr.Checkbox(label="Naive", value=True)
|
| 861 |
-
|
| 862 |
-
# Common seasonality parameter at the top level
|
| 863 |
-
with gr.Group():
|
| 864 |
-
gr.Markdown("### Seasonality Configuration")
|
| 865 |
-
gr.Markdown("This seasonality period affects Seasonal Naive, Seasonal Window Average, AutoETS, and AutoARIMA models")
|
| 866 |
-
seasonality = gr.Number(label="Seasonality Period", value=5)
|
| 867 |
-
|
| 868 |
-
gr.Markdown("### Seasonal Models")
|
| 869 |
-
with gr.Row():
|
| 870 |
-
use_seasonal_naive = gr.Checkbox(label="Seasonal Naive", value=True)
|
| 871 |
-
|
| 872 |
-
gr.Markdown("### Window-based Models")
|
| 873 |
-
with gr.Row():
|
| 874 |
-
use_window_avg = gr.Checkbox(label="Window Average", value=True)
|
| 875 |
-
window_size = gr.Number(label="Window Size", value=10)
|
| 876 |
-
|
| 877 |
-
with gr.Row():
|
| 878 |
-
use_seasonal_window_avg = gr.Checkbox(label="Seasonal Window Average", value=True)
|
| 879 |
-
seasonal_window_size = gr.Number(label="Seasonal Window Size", value=2)
|
| 880 |
-
|
| 881 |
-
gr.Markdown("### Advanced Models (use seasonality from above)")
|
| 882 |
-
with gr.Row():
|
| 883 |
-
use_autoets = gr.Checkbox(label="AutoETS (Exponential Smoothing)", value=True)
|
| 884 |
-
use_autoarima = gr.Checkbox(label="AutoARIMA", value=True)
|
| 885 |
|
| 886 |
with gr.Column(scale=3):
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
with gr.Tabs() as tabs:
|
| 890 |
with gr.TabItem("Validation Results"):
|
| 891 |
-
|
| 892 |
validation_plot = gr.Plot(label="Validation Plot")
|
| 893 |
-
validation_output = gr.Dataframe(label="Validation Data", visible=False)
|
| 894 |
-
|
| 895 |
-
with gr.Row():
|
| 896 |
-
show_data_btn = gr.Button("Show Validation Data")
|
| 897 |
-
hide_data_btn = gr.Button("Hide Validation Data", visible=False)
|
| 898 |
-
|
| 899 |
-
def show_data():
|
| 900 |
-
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
|
| 901 |
-
|
| 902 |
-
def hide_data():
|
| 903 |
-
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
| 904 |
-
|
| 905 |
-
show_data_btn.click(
|
| 906 |
-
fn=show_data,
|
| 907 |
-
outputs=[validation_output, hide_data_btn, show_data_btn]
|
| 908 |
-
)
|
| 909 |
-
|
| 910 |
-
hide_data_btn.click(
|
| 911 |
-
fn=hide_data,
|
| 912 |
-
outputs=[validation_output, hide_data_btn, show_data_btn]
|
| 913 |
-
)
|
| 914 |
-
|
| 915 |
with gr.TabItem("Future Forecast"):
|
|
|
|
| 916 |
forecast_plot = gr.Plot(label="Future Forecast Plot")
|
| 917 |
-
|
| 918 |
-
|
| 919 |
-
|
| 920 |
-
show_forecast_btn = gr.Button("Show Forecast Data")
|
| 921 |
-
hide_forecast_btn = gr.Button("Hide Forecast Data", visible=False)
|
| 922 |
-
|
| 923 |
-
def show_forecast():
|
| 924 |
-
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
|
| 925 |
-
|
| 926 |
-
def hide_forecast():
|
| 927 |
-
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
| 928 |
-
|
| 929 |
-
show_forecast_btn.click(
|
| 930 |
-
fn=show_forecast,
|
| 931 |
-
outputs=[forecast_output, hide_forecast_btn, show_forecast_btn]
|
| 932 |
-
)
|
| 933 |
-
|
| 934 |
-
hide_forecast_btn.click(
|
| 935 |
-
fn=hide_forecast,
|
| 936 |
-
outputs=[forecast_output, hide_forecast_btn, show_forecast_btn]
|
| 937 |
-
)
|
| 938 |
-
|
| 939 |
with gr.TabItem("Export Results"):
|
| 940 |
export_files = gr.Files(label="Download Results")
|
| 941 |
|
| 942 |
-
|
| 943 |
-
submit_btn = gr.Button("Run Validation and Forecast", variant="primary", size="lg")
|
| 944 |
-
|
| 945 |
-
# Update visibility of the appropriate box based on evaluation strategy
|
| 946 |
-
def update_eval_boxes(strategy):
|
| 947 |
-
return (gr.update(visible=strategy == "Fixed Window"),
|
| 948 |
-
gr.update(visible=strategy == "Cross Validation"))
|
| 949 |
-
|
| 950 |
-
eval_strategy.change(
|
| 951 |
-
fn=update_eval_boxes,
|
| 952 |
-
inputs=[eval_strategy],
|
| 953 |
-
outputs=[fixed_window_box, cv_box]
|
| 954 |
-
)
|
| 955 |
|
| 956 |
-
|
| 957 |
submit_btn.click(
|
| 958 |
fn=run_forecast,
|
| 959 |
inputs=[
|
| 960 |
file_input, frequency, eval_strategy, horizon, step_size, num_windows,
|
| 961 |
use_historical_avg, use_naive, use_seasonal_naive, seasonality,
|
| 962 |
use_window_avg, window_size, use_seasonal_window_avg, seasonal_window_size,
|
| 963 |
-
use_autoets, use_autoarima, future_horizon
|
| 964 |
],
|
| 965 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 966 |
)
|
| 967 |
|
| 968 |
if __name__ == "__main__":
|
| 969 |
-
app.launch(share=False)
|
|
|
|
| 18 |
|
| 19 |
from utilsforecast.evaluation import evaluate
|
| 20 |
from utilsforecast.losses import *
|
| 21 |
+
from utilsforecast.plotting import plot_series
|
| 22 |
|
| 23 |
+
from nixtla import NixtlaClient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
# Initialize TimeGPT client using Hugging Face secret
|
| 26 |
+
nixtla_api_key = os.getenv("NIXTLA_API_KEY")
|
| 27 |
+
nixtla_client = NixtlaClient(api_key=nixtla_api_key)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
# Sample Dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def download_sample():
|
| 31 |
sample_data = """unique_id,ds,y
|
| 32 |
^GSPC,2023-01-03,3824.139892578125
|
|
|
|
| 597 |
temp.close()
|
| 598 |
return temp.name
|
| 599 |
|
| 600 |
+
# Load and validate user data
|
| 601 |
+
def load_data(file):
|
| 602 |
+
if file is None:
|
| 603 |
+
return None, "Please upload a CSV file"
|
| 604 |
+
try:
|
| 605 |
+
df = pd.read_csv(file)
|
| 606 |
+
required_cols = ['unique_id', 'ds', 'y']
|
| 607 |
+
missing = [c for c in required_cols if c not in df.columns]
|
| 608 |
+
if missing:
|
| 609 |
+
return None, f"Missing required columns: {', '.join(missing)}"
|
| 610 |
+
df['ds'] = pd.to_datetime(df['ds'])
|
| 611 |
+
df = df.sort_values(['unique_id', 'ds']).reset_index(drop=True)
|
| 612 |
+
if df['y'].isna().any():
|
| 613 |
+
return None, "Data contains missing values in 'y'"
|
| 614 |
+
return df, "Data loaded successfully!"
|
| 615 |
+
except Exception as e:
|
| 616 |
+
return None, f"Error loading data: {e}"
|
| 617 |
|
| 618 |
+
# Export results to CSV files for download
|
| 619 |
+
def export_results(eval_df, validation_df, future_df):
|
| 620 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 621 |
+
temp_dir = tempfile.mkdtemp()
|
| 622 |
+
result_files = []
|
| 623 |
+
if eval_df is not None:
|
| 624 |
+
path = os.path.join(temp_dir, f"evaluation_metrics_{timestamp}.csv")
|
| 625 |
+
eval_df.to_csv(path, index=False)
|
| 626 |
+
result_files.append(path)
|
| 627 |
+
if validation_df is not None:
|
| 628 |
+
path = os.path.join(temp_dir, f"validation_results_{timestamp}.csv")
|
| 629 |
+
validation_df.to_csv(path, index=False)
|
| 630 |
+
result_files.append(path)
|
| 631 |
+
if future_df is not None:
|
| 632 |
+
path = os.path.join(temp_dir, f"future_forecasts_{timestamp}.csv")
|
| 633 |
+
future_df.to_csv(path, index=False)
|
| 634 |
+
result_files.append(path)
|
| 635 |
+
return result_files
|
| 636 |
+
|
| 637 |
+
# Main forecasting logic
|
| 638 |
+
def run_forecast(
|
| 639 |
+
file,
|
| 640 |
+
frequency,
|
| 641 |
+
eval_strategy,
|
| 642 |
+
horizon,
|
| 643 |
+
step_size,
|
| 644 |
+
num_windows,
|
| 645 |
+
use_historical_avg,
|
| 646 |
+
use_naive,
|
| 647 |
+
use_seasonal_naive,
|
| 648 |
+
seasonality,
|
| 649 |
+
use_window_avg,
|
| 650 |
+
window_size,
|
| 651 |
+
use_seasonal_window_avg,
|
| 652 |
+
seasonal_window_size,
|
| 653 |
+
use_autoets,
|
| 654 |
+
use_autoarima,
|
| 655 |
+
use_timegpt,
|
| 656 |
+
future_horizon
|
| 657 |
+
):
|
| 658 |
+
df, msg = load_data(file)
|
| 659 |
+
if df is None:
|
| 660 |
+
# return placeholders plus message
|
| 661 |
+
return [None]*9 + [msg]
|
| 662 |
+
|
| 663 |
+
# Build model list
|
| 664 |
+
models = []
|
| 665 |
+
if use_historical_avg:
|
| 666 |
+
models.append(HistoricAverage())
|
| 667 |
+
if use_naive:
|
| 668 |
+
models.append(Naive())
|
| 669 |
+
if use_seasonal_naive:
|
| 670 |
+
models.append(SeasonalNaive(season_length=seasonality))
|
| 671 |
+
if use_window_avg:
|
| 672 |
+
models.append(WindowAverage(window_size=window_size))
|
| 673 |
+
if use_seasonal_window_avg:
|
| 674 |
+
models.append(SeasonalWindowAverage(season_length=seasonal_window_size))
|
| 675 |
+
if use_autoets:
|
| 676 |
+
models.append(AutoETS(season_length=seasonality))
|
| 677 |
+
if use_autoarima:
|
| 678 |
+
models.append(AutoARIMA(season_length=seasonality))
|
| 679 |
+
|
| 680 |
+
if not models and not use_timegpt:
|
| 681 |
+
return [None]*9 + ["Please select at least one forecasting model"]
|
| 682 |
+
|
| 683 |
+
# StatsForecast run
|
| 684 |
+
sf = StatsForecast(models=models, freq=frequency, n_jobs=-1) if models else None
|
| 685 |
+
|
| 686 |
+
# Cross validation or fixed-window evaluation
|
| 687 |
+
validation_df, fig_val = None, None
|
| 688 |
+
if sf is not None:
|
| 689 |
+
if eval_strategy == "Cross Validation":
|
| 690 |
+
validation_df = sf.cross_validation(
|
| 691 |
+
df=df, h=horizon, step_size=step_size, periods=num_windows
|
| 692 |
+
)
|
| 693 |
+
else:
|
| 694 |
+
# Fixed window splits
|
| 695 |
+
cutoff = df['ds'].max() - pd.to_timedelta(horizon, unit=frequency)
|
| 696 |
+
validation_df = sf.forecast(df[df['ds'] <= cutoff], h=horizon)
|
| 697 |
+
eval_df = evaluate(validation_df)
|
| 698 |
+
fig_val = plot_series(df=df, forecast_df=validation_df, title="Validation Results")
|
| 699 |
+
else:
|
| 700 |
+
eval_df = None
|
| 701 |
+
|
| 702 |
+
# Future forecast with StatsForecast
|
| 703 |
+
future_df, fig_future = None, None
|
| 704 |
+
if sf is not None:
|
| 705 |
+
future_df = sf.forecast(df=df, h=future_horizon)
|
| 706 |
+
fig_future = plot_series(df=df, forecast_df=future_df, title="Future Forecast")
|
| 707 |
+
|
| 708 |
+
# TimeGPT / Transformer forecast
|
| 709 |
+
tg_df, fig_tg = None, None
|
| 710 |
+
if use_timegpt:
|
| 711 |
+
tdf = df[['unique_id', 'ds', 'y']]
|
| 712 |
+
tg_df = nixtla_client.forecast(
|
| 713 |
+
df=tdf, h=future_horizon, freq=frequency, level=[95]
|
| 714 |
+
)
|
| 715 |
+
fig_tg = nixtla_client.plot(
|
| 716 |
+
df=tdf, forecasts_df=tg_df, level=[95]
|
| 717 |
+
)
|
| 718 |
+
|
| 719 |
+
# Export all results
|
| 720 |
+
files = export_results(
|
| 721 |
+
eval_df if sf is not None else None,
|
| 722 |
+
validation_df,
|
| 723 |
+
future_df
|
| 724 |
+
)
|
| 725 |
+
|
| 726 |
+
return (
|
| 727 |
+
eval_df,
|
| 728 |
+
validation_df,
|
| 729 |
+
fig_val,
|
| 730 |
+
future_df,
|
| 731 |
+
fig_future,
|
| 732 |
+
tg_df,
|
| 733 |
+
fig_tg,
|
| 734 |
+
files,
|
| 735 |
+
"Analysis completed successfully!"
|
| 736 |
+
)
|
| 737 |
+
|
| 738 |
+
# Build Gradio interface
|
| 739 |
+
theme = None # adjust or import your theme
|
| 740 |
with gr.Blocks(title="Time Series Forecasting App", theme=theme) as app:
|
| 741 |
gr.Markdown("# 📈 Time Series Forecasting App")
|
| 742 |
+
gr.Markdown(
|
| 743 |
+
"> **Disclaimer:** For simplicity, external predictors (covariates) are not supported in this demo. "
|
| 744 |
+
"However, you can include them by passing an `X_df` to StatsForecast (via `sf.forecast(...)`) "
|
| 745 |
+
"or to TimeGPT via `X_df=` in `nixtla_client.forecast(...)`.")
|
| 746 |
|
| 747 |
with gr.Row():
|
| 748 |
with gr.Column(scale=2):
|
| 749 |
file_input = gr.File(label="Upload CSV file", file_types=[".csv"])
|
|
|
|
| 750 |
download_btn = gr.Button("Download Sample Data", variant="secondary")
|
| 751 |
+
download_output = gr.File(label="Download Sample", visible=True)
|
| 752 |
download_btn.click(fn=download_sample, outputs=download_output)
|
| 753 |
|
| 754 |
with gr.Accordion("Data & Validation Settings", open=True):
|
| 755 |
frequency = gr.Dropdown(
|
| 756 |
+
choices=["D", "W", "M", "H"], value="D", label="Frequency"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 757 |
)
|
|
|
|
|
|
|
| 758 |
eval_strategy = gr.Radio(
|
| 759 |
+
choices=["Cross Validation", "Fixed Window"],
|
| 760 |
+
value="Cross Validation",
|
| 761 |
+
label="Validation Strategy"
|
| 762 |
)
|
| 763 |
+
horizon = gr.Slider(1, 100, value=10, label="CV Horizon")
|
| 764 |
+
step_size = gr.Slider(1, 100, value=1, label="CV Step Size")
|
| 765 |
+
num_windows = gr.Number(value=3, label="Number of CV Windows")
|
| 766 |
+
|
| 767 |
+
with gr.Accordion("Models", open=True):
|
| 768 |
+
use_historical_avg = gr.Checkbox(label="Historical Average", value=True)
|
| 769 |
+
use_naive = gr.Checkbox(label="Naive", value=False)
|
| 770 |
+
use_seasonal_naive = gr.Checkbox(label="Seasonal Naive", value=False)
|
| 771 |
+
seasonality = gr.Number(value=12, label="Seasonality")
|
| 772 |
+
use_window_avg = gr.Checkbox(label="Window Average", value=False)
|
| 773 |
+
window_size = gr.Number(value=3, label="Window Size")
|
| 774 |
+
use_seasonal_window_avg = gr.Checkbox(label="Seasonal Window Average", value=False)
|
| 775 |
+
seasonal_window_size = gr.Number(value=12, label="Seasonal Window Size")
|
| 776 |
+
use_autoets = gr.Checkbox(label="AutoETS", value=False)
|
| 777 |
+
use_autoarima = gr.Checkbox(label="AutoARIMA", value=False)
|
| 778 |
+
gr.Markdown("### Transformer Models")
|
| 779 |
+
use_timegpt = gr.Checkbox(label="TimeGPT (Transformer)", value=False)
|
| 780 |
|
| 781 |
+
future_horizon = gr.Slider(1, 100, value=12, label="Future Forecast Horizon")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 782 |
|
| 783 |
with gr.Column(scale=3):
|
| 784 |
+
eval_output = gr.Dataframe(label="Evaluation Metrics")
|
| 785 |
+
with gr.Tabs():
|
|
|
|
| 786 |
with gr.TabItem("Validation Results"):
|
| 787 |
+
validation_output = gr.Dataframe(label="Validation Data")
|
| 788 |
validation_plot = gr.Plot(label="Validation Plot")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 789 |
with gr.TabItem("Future Forecast"):
|
| 790 |
+
forecast_output = gr.Dataframe(label="Future Forecast Data")
|
| 791 |
forecast_plot = gr.Plot(label="Future Forecast Plot")
|
| 792 |
+
with gr.TabItem("Transformer Forecast"):
|
| 793 |
+
tg_output = gr.Dataframe(label="TimeGPT Forecast Data")
|
| 794 |
+
tg_plot = gr.Plot(label="TimeGPT Forecast Plot")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 795 |
with gr.TabItem("Export Results"):
|
| 796 |
export_files = gr.Files(label="Download Results")
|
| 797 |
|
| 798 |
+
message_output = gr.Markdown()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 799 |
|
| 800 |
+
submit_btn = gr.Button("Run Validation and Forecast", variant="primary", size="lg")
|
| 801 |
submit_btn.click(
|
| 802 |
fn=run_forecast,
|
| 803 |
inputs=[
|
| 804 |
file_input, frequency, eval_strategy, horizon, step_size, num_windows,
|
| 805 |
use_historical_avg, use_naive, use_seasonal_naive, seasonality,
|
| 806 |
use_window_avg, window_size, use_seasonal_window_avg, seasonal_window_size,
|
| 807 |
+
use_autoets, use_autoarima, use_timegpt, future_horizon
|
| 808 |
],
|
| 809 |
+
outputs=[
|
| 810 |
+
eval_output,
|
| 811 |
+
validation_output, validation_plot,
|
| 812 |
+
forecast_output, forecast_plot,
|
| 813 |
+
tg_output, tg_plot,
|
| 814 |
+
export_files,
|
| 815 |
+
message_output
|
| 816 |
+
]
|
| 817 |
)
|
| 818 |
|
| 819 |
if __name__ == "__main__":
|
| 820 |
+
app.launch(share=False)
|