fmegahed commited on
Commit
d8f172b
·
verified ·
1 Parent(s): 7b16b97

Ignored the confidence level for simplicty

Browse files
Files changed (1) hide show
  1. app.py +6 -10
app.py CHANGED
@@ -52,6 +52,7 @@ def create_forecast_plot(forecast_df, original_df, title="Forecasting Results"):
52
  forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds', 'cutoff']]
53
 
54
  colors = plt.cm.tab10.colors
 
55
 
56
  for i, unique_id in enumerate(unique_ids):
57
  original_data = original_df[original_df['unique_id'] == unique_id]
@@ -257,16 +258,14 @@ def run_forecast(
257
  timegpt_cv_df = nixtla_client.cross_validation(
258
  df=df,
259
  h=horizon,
260
- freq=frequency,
261
- level=level,
262
  n_windows=num_windows,
263
  step_size=step_size
264
  )
265
  timegpt_cv_eval = evaluate(
266
  df=timegpt_cv_df,
267
  metrics=[mape, mae, rmse, bias],
268
- models=['TimeGPT'],
269
- level=level
270
  )
271
  timegpt_eval_df = pd.DataFrame(timegpt_cv_eval).reset_index()
272
  else: # Fixed window
@@ -274,15 +273,13 @@ def run_forecast(
274
  df=df,
275
  h=horizon,
276
  freq=frequency,
277
- level=level,
278
  n_windows=1,
279
  step_size=10
280
  )
281
  timegpt_cv_eval = evaluate(
282
  df=timegpt_cv_df,
283
  metrics=[mape, mae, rmse, bias],
284
- models=['TimeGPT'],
285
- level=level
286
  )
287
  timegpt_eval_df = pd.DataFrame(timegpt_cv_eval).reset_index()
288
 
@@ -290,8 +287,7 @@ def run_forecast(
290
  forecast_timegpt = nixtla_client.forecast(
291
  df=df,
292
  h=future_horizon,
293
- freq=frequency,
294
- level=level,
295
  finetune_loss=finetune_loss
296
  )
297
 
@@ -985,7 +981,7 @@ with gr.Blocks(title="Time Series Forecasting App", theme=theme) as app:
985
  ("Yearly", "YS")
986
  ],
987
  label="Data Frequency",
988
- value="B"
989
  )
990
 
991
  # Evaluation Strategy
 
52
  forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds', 'cutoff']]
53
 
54
  colors = plt.cm.tab10.colors
55
+ min_cutoff = None
56
 
57
  for i, unique_id in enumerate(unique_ids):
58
  original_data = original_df[original_df['unique_id'] == unique_id]
 
258
  timegpt_cv_df = nixtla_client.cross_validation(
259
  df=df,
260
  h=horizon,
261
+ freq=frequency,
 
262
  n_windows=num_windows,
263
  step_size=step_size
264
  )
265
  timegpt_cv_eval = evaluate(
266
  df=timegpt_cv_df,
267
  metrics=[mape, mae, rmse, bias],
268
+ models=['TimeGPT'],
 
269
  )
270
  timegpt_eval_df = pd.DataFrame(timegpt_cv_eval).reset_index()
271
  else: # Fixed window
 
273
  df=df,
274
  h=horizon,
275
  freq=frequency,
 
276
  n_windows=1,
277
  step_size=10
278
  )
279
  timegpt_cv_eval = evaluate(
280
  df=timegpt_cv_df,
281
  metrics=[mape, mae, rmse, bias],
282
+ models=['TimeGPT']
 
283
  )
284
  timegpt_eval_df = pd.DataFrame(timegpt_cv_eval).reset_index()
285
 
 
287
  forecast_timegpt = nixtla_client.forecast(
288
  df=df,
289
  h=future_horizon,
290
+ freq=frequency,
 
291
  finetune_loss=finetune_loss
292
  )
293
 
 
981
  ("Yearly", "YS")
982
  ],
983
  label="Data Frequency",
984
+ value="D"
985
  )
986
 
987
  # Evaluation Strategy