Spaces:
Running
Running
Bug fixes in the app, with both the evaluate function and the download button
Browse files
app.py
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
-
import numpy as np
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
import gradio as gr
|
|
|
|
| 5 |
|
| 6 |
from statsforecast import StatsForecast
|
| 7 |
from statsforecast.models import (
|
| 8 |
-
|
| 9 |
Naive,
|
| 10 |
SeasonalNaive,
|
| 11 |
WindowAverage,
|
|
@@ -15,36 +15,46 @@ from statsforecast.models import (
|
|
| 15 |
)
|
| 16 |
|
| 17 |
from utilsforecast.evaluation import evaluate
|
| 18 |
-
import tempfile
|
| 19 |
|
| 20 |
-
# Function to load and process
|
| 21 |
def load_data(file):
|
| 22 |
if file is None:
|
| 23 |
return None, "Please upload a CSV file"
|
| 24 |
-
|
| 25 |
try:
|
| 26 |
-
# Safe read using file-like object
|
| 27 |
df = pd.read_csv(file)
|
| 28 |
-
|
| 29 |
-
# Check for required columns
|
| 30 |
required_cols = ['unique_id', 'ds', 'y']
|
| 31 |
missing_cols = [col for col in required_cols if col not in df.columns]
|
| 32 |
-
|
| 33 |
if missing_cols:
|
| 34 |
return None, f"Missing required columns: {', '.join(missing_cols)}"
|
| 35 |
-
|
| 36 |
-
# Convert 'ds' to datetime
|
| 37 |
df['ds'] = pd.to_datetime(df['ds'])
|
| 38 |
-
|
| 39 |
-
# Sort by date
|
| 40 |
df = df.sort_values(['unique_id', 'ds'])
|
| 41 |
-
|
| 42 |
return df, "Data loaded successfully!"
|
| 43 |
-
|
| 44 |
except Exception as e:
|
| 45 |
return None, f"Error loading data: {str(e)}"
|
| 46 |
|
| 47 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
def run_forecast(
|
| 49 |
file,
|
| 50 |
frequency,
|
|
@@ -68,99 +78,99 @@ def run_forecast(
|
|
| 68 |
return None, None, None, message
|
| 69 |
|
| 70 |
models = []
|
| 71 |
-
|
|
|
|
| 72 |
if use_historical_avg:
|
| 73 |
-
models.append(
|
|
|
|
| 74 |
if use_naive:
|
| 75 |
models.append(Naive(alias='naive'))
|
|
|
|
| 76 |
if use_seasonal_naive:
|
| 77 |
models.append(SeasonalNaive(m=seasonality, alias='seasonal_naive'))
|
|
|
|
| 78 |
if use_window_avg:
|
| 79 |
models.append(WindowAverage(window_size=window_size, alias='window_average'))
|
|
|
|
| 80 |
if use_seasonal_window_avg:
|
| 81 |
models.append(SeasonalWindowAverage(m=seasonality, window_size=seasonal_window_size, alias='seasonal_window_average'))
|
|
|
|
| 82 |
if use_autoets:
|
| 83 |
models.append(AutoETS(alias='autoets'))
|
|
|
|
| 84 |
if use_autoarima:
|
| 85 |
models.append(AutoARIMA(alias='autoarima'))
|
|
|
|
| 86 |
|
| 87 |
if not models:
|
| 88 |
return None, None, None, "Please select at least one forecasting model"
|
| 89 |
|
| 90 |
sf = StatsForecast(models=models, freq=frequency, n_jobs=-1)
|
| 91 |
-
|
| 92 |
try:
|
| 93 |
if eval_strategy == "Cross Validation":
|
| 94 |
cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
|
| 95 |
-
evaluation = evaluate(cv_results,
|
| 96 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
| 97 |
fig_forecast = create_forecast_plot(cv_results, df)
|
| 98 |
return eval_df, cv_results, fig_forecast, "Cross validation completed successfully!"
|
| 99 |
-
|
|
|
|
| 100 |
train_size = len(df) - horizon
|
| 101 |
if train_size <= 0:
|
| 102 |
return None, None, None, f"Not enough data for horizon={horizon}"
|
| 103 |
-
|
| 104 |
train_df = df.iloc[:train_size]
|
| 105 |
test_df = df.iloc[train_size:]
|
| 106 |
sf.fit(train_df)
|
| 107 |
forecast = sf.predict(h=horizon)
|
| 108 |
-
evaluation = evaluate(forecast,
|
| 109 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
| 110 |
fig_forecast = create_forecast_plot(forecast, df)
|
| 111 |
return eval_df, forecast, fig_forecast, "Fixed window evaluation completed successfully!"
|
| 112 |
-
|
| 113 |
except Exception as e:
|
| 114 |
return None, None, None, f"Error during forecasting: {str(e)}"
|
| 115 |
|
| 116 |
-
#
|
| 117 |
-
def create_forecast_plot(forecast_df, original_df):
|
| 118 |
-
plt.figure(figsize=(10, 6))
|
| 119 |
-
unique_ids = forecast_df['unique_id'].unique()
|
| 120 |
-
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds']]
|
| 121 |
-
|
| 122 |
-
for unique_id in unique_ids:
|
| 123 |
-
original_data = original_df[original_df['unique_id'] == unique_id]
|
| 124 |
-
plt.plot(original_data['ds'], original_data['y'], 'k-', label='Actual')
|
| 125 |
-
forecast_data = forecast_df[forecast_df['unique_id'] == unique_id]
|
| 126 |
-
for col in forecast_cols:
|
| 127 |
-
if col in forecast_data.columns:
|
| 128 |
-
plt.plot(forecast_data['ds'], forecast_data[col], label=col)
|
| 129 |
-
|
| 130 |
-
plt.title('Forecasting Results')
|
| 131 |
-
plt.xlabel('Date')
|
| 132 |
-
plt.ylabel('Value')
|
| 133 |
-
plt.legend()
|
| 134 |
-
plt.grid(True)
|
| 135 |
-
fig = plt.gcf()
|
| 136 |
-
return fig
|
| 137 |
-
|
| 138 |
-
# Download sample file (placeholder path)
|
| 139 |
def download_sample():
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
with gr.Blocks(title="StatsForecast Demo") as app:
|
| 144 |
gr.Markdown("# 📈 StatsForecast Demo App")
|
| 145 |
-
gr.Markdown("Upload a CSV with `unique_id`, `ds`, `y` columns
|
| 146 |
|
| 147 |
with gr.Row():
|
| 148 |
with gr.Column(scale=2):
|
| 149 |
file_input = gr.File(label="Upload CSV file", file_types=[".csv"])
|
|
|
|
| 150 |
download_btn = gr.Button("Download Sample Data")
|
| 151 |
-
download_output = gr.File(
|
| 152 |
download_btn.click(fn=download_sample, outputs=download_output)
|
| 153 |
|
| 154 |
-
frequency = gr.Dropdown(
|
| 155 |
-
|
| 156 |
-
label="Frequency",
|
| 157 |
-
value="D"
|
| 158 |
-
)
|
| 159 |
-
eval_strategy = gr.Radio(
|
| 160 |
-
choices=["Fixed Window", "Cross Validation"],
|
| 161 |
-
label="Evaluation Strategy",
|
| 162 |
-
value="Cross Validation"
|
| 163 |
-
)
|
| 164 |
horizon = gr.Slider(1, 100, value=14, label="Horizon")
|
| 165 |
step_size = gr.Slider(1, 50, value=5, label="Step Size")
|
| 166 |
num_windows = gr.Slider(1, 20, value=3, label="Number of Windows")
|
|
@@ -197,4 +207,4 @@ with gr.Blocks(title="StatsForecast Demo") as app:
|
|
| 197 |
)
|
| 198 |
|
| 199 |
if __name__ == "__main__":
|
| 200 |
-
app.launch()
|
|
|
|
| 1 |
import pandas as pd
|
|
|
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
import gradio as gr
|
| 4 |
+
import tempfile
|
| 5 |
|
| 6 |
from statsforecast import StatsForecast
|
| 7 |
from statsforecast.models import (
|
| 8 |
+
HistoricalAverage,
|
| 9 |
Naive,
|
| 10 |
SeasonalNaive,
|
| 11 |
WindowAverage,
|
|
|
|
| 15 |
)
|
| 16 |
|
| 17 |
from utilsforecast.evaluation import evaluate
|
|
|
|
| 18 |
|
| 19 |
+
# Function to load and process uploaded CSV
|
| 20 |
def load_data(file):
|
| 21 |
if file is None:
|
| 22 |
return None, "Please upload a CSV file"
|
|
|
|
| 23 |
try:
|
|
|
|
| 24 |
df = pd.read_csv(file)
|
|
|
|
|
|
|
| 25 |
required_cols = ['unique_id', 'ds', 'y']
|
| 26 |
missing_cols = [col for col in required_cols if col not in df.columns]
|
|
|
|
| 27 |
if missing_cols:
|
| 28 |
return None, f"Missing required columns: {', '.join(missing_cols)}"
|
|
|
|
|
|
|
| 29 |
df['ds'] = pd.to_datetime(df['ds'])
|
|
|
|
|
|
|
| 30 |
df = df.sort_values(['unique_id', 'ds'])
|
|
|
|
| 31 |
return df, "Data loaded successfully!"
|
|
|
|
| 32 |
except Exception as e:
|
| 33 |
return None, f"Error loading data: {str(e)}"
|
| 34 |
|
| 35 |
+
# Function to generate and return a plot
|
| 36 |
+
def create_forecast_plot(forecast_df, original_df):
|
| 37 |
+
plt.figure(figsize=(10, 6))
|
| 38 |
+
unique_ids = forecast_df['unique_id'].unique()
|
| 39 |
+
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds']]
|
| 40 |
+
|
| 41 |
+
for unique_id in unique_ids:
|
| 42 |
+
original_data = original_df[original_df['unique_id'] == unique_id]
|
| 43 |
+
plt.plot(original_data['ds'], original_data['y'], 'k-', label='Actual')
|
| 44 |
+
forecast_data = forecast_df[forecast_df['unique_id'] == unique_id]
|
| 45 |
+
for col in forecast_cols:
|
| 46 |
+
if col in forecast_data.columns:
|
| 47 |
+
plt.plot(forecast_data['ds'], forecast_data[col], label=col)
|
| 48 |
+
|
| 49 |
+
plt.title('Forecasting Results')
|
| 50 |
+
plt.xlabel('Date')
|
| 51 |
+
plt.ylabel('Value')
|
| 52 |
+
plt.legend()
|
| 53 |
+
plt.grid(True)
|
| 54 |
+
fig = plt.gcf()
|
| 55 |
+
return fig
|
| 56 |
+
|
| 57 |
+
# Main forecasting logic
|
| 58 |
def run_forecast(
|
| 59 |
file,
|
| 60 |
frequency,
|
|
|
|
| 78 |
return None, None, None, message
|
| 79 |
|
| 80 |
models = []
|
| 81 |
+
model_aliases = []
|
| 82 |
+
|
| 83 |
if use_historical_avg:
|
| 84 |
+
models.append(HistoricalAverage(alias='historical_average'))
|
| 85 |
+
model_aliases.append('historical_average')
|
| 86 |
if use_naive:
|
| 87 |
models.append(Naive(alias='naive'))
|
| 88 |
+
model_aliases.append('naive')
|
| 89 |
if use_seasonal_naive:
|
| 90 |
models.append(SeasonalNaive(m=seasonality, alias='seasonal_naive'))
|
| 91 |
+
model_aliases.append('seasonal_naive')
|
| 92 |
if use_window_avg:
|
| 93 |
models.append(WindowAverage(window_size=window_size, alias='window_average'))
|
| 94 |
+
model_aliases.append('window_average')
|
| 95 |
if use_seasonal_window_avg:
|
| 96 |
models.append(SeasonalWindowAverage(m=seasonality, window_size=seasonal_window_size, alias='seasonal_window_average'))
|
| 97 |
+
model_aliases.append('seasonal_window_average')
|
| 98 |
if use_autoets:
|
| 99 |
models.append(AutoETS(alias='autoets'))
|
| 100 |
+
model_aliases.append('autoets')
|
| 101 |
if use_autoarima:
|
| 102 |
models.append(AutoARIMA(alias='autoarima'))
|
| 103 |
+
model_aliases.append('autoarima')
|
| 104 |
|
| 105 |
if not models:
|
| 106 |
return None, None, None, "Please select at least one forecasting model"
|
| 107 |
|
| 108 |
sf = StatsForecast(models=models, freq=frequency, n_jobs=-1)
|
| 109 |
+
|
| 110 |
try:
|
| 111 |
if eval_strategy == "Cross Validation":
|
| 112 |
cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
|
| 113 |
+
evaluation = evaluate(df=cv_results, metrics=['me', 'mae', 'rmse', 'mape'], models=model_aliases)
|
| 114 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
| 115 |
fig_forecast = create_forecast_plot(cv_results, df)
|
| 116 |
return eval_df, cv_results, fig_forecast, "Cross validation completed successfully!"
|
| 117 |
+
|
| 118 |
+
else: # Fixed window
|
| 119 |
train_size = len(df) - horizon
|
| 120 |
if train_size <= 0:
|
| 121 |
return None, None, None, f"Not enough data for horizon={horizon}"
|
| 122 |
+
|
| 123 |
train_df = df.iloc[:train_size]
|
| 124 |
test_df = df.iloc[train_size:]
|
| 125 |
sf.fit(train_df)
|
| 126 |
forecast = sf.predict(h=horizon)
|
| 127 |
+
evaluation = evaluate(df=forecast, metrics=['me', 'mae', 'rmse', 'mape'], models=model_aliases)
|
| 128 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
| 129 |
fig_forecast = create_forecast_plot(forecast, df)
|
| 130 |
return eval_df, forecast, fig_forecast, "Fixed window evaluation completed successfully!"
|
| 131 |
+
|
| 132 |
except Exception as e:
|
| 133 |
return None, None, None, f"Error during forecasting: {str(e)}"
|
| 134 |
|
| 135 |
+
# Sample CSV file generation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
def download_sample():
|
| 137 |
+
sample_data = """unique_id,ds,y
|
| 138 |
+
series1,2023-01-01,100
|
| 139 |
+
series1,2023-01-02,105
|
| 140 |
+
series1,2023-01-03,102
|
| 141 |
+
series1,2023-01-04,107
|
| 142 |
+
series1,2023-01-05,104
|
| 143 |
+
series1,2023-01-06,110
|
| 144 |
+
series1,2023-01-07,108
|
| 145 |
+
series1,2023-01-08,112
|
| 146 |
+
series1,2023-01-09,115
|
| 147 |
+
series1,2023-01-10,118
|
| 148 |
+
series1,2023-01-11,120
|
| 149 |
+
series1,2023-01-12,123
|
| 150 |
+
series1,2023-01-13,126
|
| 151 |
+
series1,2023-01-14,129
|
| 152 |
+
series1,2023-01-15,131
|
| 153 |
+
"""
|
| 154 |
+
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode='w', newline='')
|
| 155 |
+
temp.write(sample_data)
|
| 156 |
+
temp.close()
|
| 157 |
+
return temp.name
|
| 158 |
+
|
| 159 |
+
# Gradio interface
|
| 160 |
with gr.Blocks(title="StatsForecast Demo") as app:
|
| 161 |
gr.Markdown("# 📈 StatsForecast Demo App")
|
| 162 |
+
gr.Markdown("Upload a CSV with `unique_id`, `ds`, and `y` columns to apply forecasting models.")
|
| 163 |
|
| 164 |
with gr.Row():
|
| 165 |
with gr.Column(scale=2):
|
| 166 |
file_input = gr.File(label="Upload CSV file", file_types=[".csv"])
|
| 167 |
+
|
| 168 |
download_btn = gr.Button("Download Sample Data")
|
| 169 |
+
download_output = gr.File(label="Click to download", visible=True)
|
| 170 |
download_btn.click(fn=download_sample, outputs=download_output)
|
| 171 |
|
| 172 |
+
frequency = gr.Dropdown(choices=["H", "D", "WS", "MS", "QS", "YS"], label="Frequency", value="D")
|
| 173 |
+
eval_strategy = gr.Radio(choices=["Fixed Window", "Cross Validation"], label="Evaluation Strategy", value="Cross Validation")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
horizon = gr.Slider(1, 100, value=14, label="Horizon")
|
| 175 |
step_size = gr.Slider(1, 50, value=5, label="Step Size")
|
| 176 |
num_windows = gr.Slider(1, 20, value=3, label="Number of Windows")
|
|
|
|
| 207 |
)
|
| 208 |
|
| 209 |
if __name__ == "__main__":
|
| 210 |
+
app.launch(share=True)
|