Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,14 @@
|
|
| 1 |
-
import os
|
| 2 |
import gc
|
| 3 |
import gradio as gr
|
| 4 |
import numpy as np
|
| 5 |
import torch
|
| 6 |
-
import json
|
| 7 |
import spaces
|
| 8 |
import random
|
| 9 |
-
import config
|
| 10 |
import utils
|
| 11 |
import logging
|
| 12 |
-
from PIL import Image
|
| 13 |
-
from datetime import datetime
|
| 14 |
from diffusers.models import AutoencoderKL
|
| 15 |
-
from diffusers import
|
| 16 |
-
import time
|
| 17 |
-
from typing import List, Dict, Tuple, Optional
|
| 18 |
from config import (
|
| 19 |
MODEL,
|
| 20 |
MIN_IMAGE_SIZE,
|
|
@@ -23,7 +17,8 @@ from config import (
|
|
| 23 |
DEFAULT_NEGATIVE_PROMPT,
|
| 24 |
scheduler_list,
|
| 25 |
)
|
| 26 |
-
import
|
|
|
|
| 27 |
|
| 28 |
MAX_SEED = np.iinfo(np.int32).max
|
| 29 |
|
|
@@ -62,6 +57,23 @@ else:
|
|
| 62 |
pipe = None
|
| 63 |
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
class GenerationError(Exception):
|
| 66 |
"""Custom exception for generation errors"""
|
| 67 |
pass
|
|
@@ -92,11 +104,20 @@ def validate_dimensions(width: int, height: int) -> None:
|
|
| 92 |
raise GenerationError(f"Height must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}")
|
| 93 |
|
| 94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
progress=gr.Progress()
|
| 97 |
|
| 98 |
@spaces.GPU
|
| 99 |
-
def
|
| 100 |
prompt: str,
|
| 101 |
negative_prompt: str,
|
| 102 |
width: int,
|
|
@@ -177,16 +198,33 @@ def generate(
|
|
| 177 |
callback_on_step_end=callback2
|
| 178 |
).images
|
| 179 |
out_img = images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
path = utils.save_image(out_img, "./outputs")
|
| 181 |
logger.info(f"output path: {path}")
|
| 182 |
progress(1, desc="Complete")
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
except GenerationError as e:
|
| 185 |
-
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
| 187 |
except Exception as e:
|
| 188 |
-
|
| 189 |
-
|
|
|
|
|
|
|
|
|
|
| 190 |
finally:
|
| 191 |
# Cleanup
|
| 192 |
torch.cuda.empty_cache()
|
|
@@ -200,27 +238,43 @@ def generate(
|
|
| 200 |
|
| 201 |
utils.free_memory()
|
| 202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
-
|
|
|
|
|
|
|
| 205 |
|
|
|
|
|
|
|
| 206 |
|
| 207 |
|
| 208 |
title = "# Anime AI Generator"
|
| 209 |
description = "Our AI-Powered Anime Generator turns your ideas into breathtaking AI anime art—perfect for art, storytelling, or personal AI anime wallpaper. Experience more at [Anime AI Generator](https://www.animeaigen.com)."
|
| 210 |
|
| 211 |
custom_css = """
|
| 212 |
-
#row-container {
|
| 213 |
-
align-items: stretch;
|
| 214 |
-
}
|
| 215 |
-
#output-image{
|
| 216 |
-
flex-grow: 1;
|
| 217 |
-
}
|
| 218 |
-
#output-image *{
|
| 219 |
-
max-height: none !important;
|
| 220 |
-
}
|
| 221 |
"""
|
| 222 |
|
| 223 |
-
|
| 224 |
with gr.Blocks(css=custom_css).queue() as demo:
|
| 225 |
gr.Markdown(title)
|
| 226 |
gr.Markdown(description)
|
|
@@ -327,4 +381,4 @@ with gr.Blocks(css=custom_css).queue() as demo:
|
|
| 327 |
)
|
| 328 |
|
| 329 |
if __name__ == "__main__":
|
| 330 |
-
demo.
|
|
|
|
|
|
|
| 1 |
import gc
|
| 2 |
import gradio as gr
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
|
|
|
| 5 |
import spaces
|
| 6 |
import random
|
|
|
|
| 7 |
import utils
|
| 8 |
import logging
|
| 9 |
+
from PIL import Image
|
|
|
|
| 10 |
from diffusers.models import AutoencoderKL
|
| 11 |
+
from diffusers import StableDiffusionXLImg2ImgPipeline
|
|
|
|
|
|
|
| 12 |
from config import (
|
| 13 |
MODEL,
|
| 14 |
MIN_IMAGE_SIZE,
|
|
|
|
| 17 |
DEFAULT_NEGATIVE_PROMPT,
|
| 18 |
scheduler_list,
|
| 19 |
)
|
| 20 |
+
from transformers import AutoProcessor, AutoModelForImageClassification
|
| 21 |
+
|
| 22 |
|
| 23 |
MAX_SEED = np.iinfo(np.int32).max
|
| 24 |
|
|
|
|
| 57 |
pipe = None
|
| 58 |
|
| 59 |
|
| 60 |
+
# -------------------- NSFW 检测模型加载 --------------------
|
| 61 |
+
try:
|
| 62 |
+
logger.info("Loading NSFW detector...")
|
| 63 |
+
from transformers import AutoProcessor, AutoModelForImageClassification
|
| 64 |
+
nsfw_processor = AutoProcessor.from_pretrained("Falconsai/nsfw_image_detection")
|
| 65 |
+
nsfw_model = AutoModelForImageClassification.from_pretrained(
|
| 66 |
+
"Falconsai/nsfw_image_detection"
|
| 67 |
+
).to(device)
|
| 68 |
+
logger.info("NSFW detector loaded successfully.")
|
| 69 |
+
except Exception as e:
|
| 70 |
+
logger.error(f"Failed to load NSFW detector: {e}")
|
| 71 |
+
nsfw_model = None
|
| 72 |
+
nsfw_processor = None
|
| 73 |
+
# -----------------------------------------------------------
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
|
| 77 |
class GenerationError(Exception):
|
| 78 |
"""Custom exception for generation errors"""
|
| 79 |
pass
|
|
|
|
| 104 |
raise GenerationError(f"Height must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}")
|
| 105 |
|
| 106 |
|
| 107 |
+
def detect_nsfw(image: Image.Image, threshold: float = 0.5) -> bool:
|
| 108 |
+
"""Returns True if image is NSFW"""
|
| 109 |
+
inputs = nsfw_processor(images=image, return_tensors="pt").to(device)
|
| 110 |
+
with torch.no_grad():
|
| 111 |
+
outputs = nsfw_model(**inputs)
|
| 112 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 113 |
+
nsfw_score = probs[0][1].item() # label 1 = NSFW
|
| 114 |
+
return nsfw_score > threshold
|
| 115 |
+
|
| 116 |
|
| 117 |
progress=gr.Progress()
|
| 118 |
|
| 119 |
@spaces.GPU
|
| 120 |
+
def _generate_on_gpu(
|
| 121 |
prompt: str,
|
| 122 |
negative_prompt: str,
|
| 123 |
width: int,
|
|
|
|
| 198 |
callback_on_step_end=callback2
|
| 199 |
).images
|
| 200 |
out_img = images[0]
|
| 201 |
+
|
| 202 |
+
# NSFW 检测
|
| 203 |
+
if nsfw_model and nsfw_processor:
|
| 204 |
+
if detect_nsfw(out_img):
|
| 205 |
+
msg = "Generated image contains NSFW content and cannot be displayed. Please modify your prompt and try again."
|
| 206 |
+
raise Exception(msg)
|
| 207 |
+
|
| 208 |
path = utils.save_image(out_img, "./outputs")
|
| 209 |
logger.info(f"output path: {path}")
|
| 210 |
progress(1, desc="Complete")
|
| 211 |
+
|
| 212 |
+
info = {
|
| 213 |
+
"status": "success"
|
| 214 |
+
}
|
| 215 |
+
return path, info
|
| 216 |
except GenerationError as e:
|
| 217 |
+
error_info = {
|
| 218 |
+
"error": str(e),
|
| 219 |
+
"status": "failed",
|
| 220 |
+
}
|
| 221 |
+
return None, error_info
|
| 222 |
except Exception as e:
|
| 223 |
+
error_info = {
|
| 224 |
+
"error": str(e),
|
| 225 |
+
"status": "failed",
|
| 226 |
+
}
|
| 227 |
+
return None, error_info
|
| 228 |
finally:
|
| 229 |
# Cleanup
|
| 230 |
torch.cuda.empty_cache()
|
|
|
|
| 238 |
|
| 239 |
utils.free_memory()
|
| 240 |
|
| 241 |
+
def generate(
|
| 242 |
+
prompt: str,
|
| 243 |
+
negative_prompt: str,
|
| 244 |
+
width: int,
|
| 245 |
+
height: int,
|
| 246 |
+
scheduler: str,
|
| 247 |
+
opt_strength: float,
|
| 248 |
+
opt_scale: float,
|
| 249 |
+
seed: int,
|
| 250 |
+
randomize_seed: bool,
|
| 251 |
+
guidance_scale: float,
|
| 252 |
+
num_inference_steps: int,
|
| 253 |
+
):
|
| 254 |
+
# 调用 GPU 函数
|
| 255 |
+
image_path, info = _generate_on_gpu(
|
| 256 |
+
prompt, negative_prompt,
|
| 257 |
+
width, height,
|
| 258 |
+
scheduler,
|
| 259 |
+
opt_strength, opt_scale,
|
| 260 |
+
seed, randomize_seed,
|
| 261 |
+
guidance_scale, num_inference_steps,
|
| 262 |
+
)
|
| 263 |
|
| 264 |
+
# 如果出错,抛出异常
|
| 265 |
+
if info["status"] == "failed":
|
| 266 |
+
raise gr.Error(info["error"])
|
| 267 |
|
| 268 |
+
# 返回图片路径
|
| 269 |
+
return image_path
|
| 270 |
|
| 271 |
|
| 272 |
title = "# Anime AI Generator"
|
| 273 |
description = "Our AI-Powered Anime Generator turns your ideas into breathtaking AI anime art—perfect for art, storytelling, or personal AI anime wallpaper. Experience more at [Anime AI Generator](https://www.animeaigen.com)."
|
| 274 |
|
| 275 |
custom_css = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
"""
|
| 277 |
|
|
|
|
| 278 |
with gr.Blocks(css=custom_css).queue() as demo:
|
| 279 |
gr.Markdown(title)
|
| 280 |
gr.Markdown(description)
|
|
|
|
| 381 |
)
|
| 382 |
|
| 383 |
if __name__ == "__main__":
|
| 384 |
+
demo.launch()
|