Spaces:
Configuration error
Configuration error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
-
import
|
| 2 |
import torch
|
| 3 |
import fitz # PyMuPDF
|
| 4 |
-
from transformers import AutoTokenizer,
|
| 5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
from langchain_community.vectorstores import FAISS
|
| 7 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
@@ -9,161 +9,202 @@ from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
|
| 9 |
from langchain.chains import ConversationalRetrievalChain
|
| 10 |
from langchain.memory import ConversationBufferMemory
|
| 11 |
from langchain.prompts import PromptTemplate
|
|
|
|
|
|
|
| 12 |
import pandas as pd
|
| 13 |
from aif360.datasets import StandardDataset
|
| 14 |
from aif360.metrics import BinaryLabelDatasetMetric
|
| 15 |
-
import time
|
| 16 |
|
| 17 |
-
# ---
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
# ---
|
|
|
|
| 22 |
def load_llm():
|
| 23 |
-
"""
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 33 |
-
llm_model_name, torch_dtype=torch.bfloat16, load_in_4bit=True
|
| 34 |
-
)
|
| 35 |
-
tokenizer = AutoTokenizer.from_pretrained(llm_model_name)
|
| 36 |
-
|
| 37 |
-
pipe = pipeline(
|
| 38 |
-
"text-generation", model=model, tokenizer=tokenizer,
|
| 39 |
-
max_new_tokens=512, temperature=0.1, device=0
|
| 40 |
-
)
|
| 41 |
-
_llm = HuggingFacePipeline(pipeline=pipe)
|
| 42 |
-
return _llm
|
| 43 |
-
|
| 44 |
-
def load_and_process_pdf(pdf_path="PMKisanSamanNidhi.PDF"):
|
| 45 |
-
"""Loads and processes the PDF into a FAISS vector store."""
|
| 46 |
-
print("Loading and processing PDF...")
|
| 47 |
-
doc = fitz.open(pdf_path)
|
| 48 |
-
text = "".join(page.get_text() for page in doc)
|
| 49 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
|
| 50 |
docs = text_splitter.create_documents([text])
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
vector_db = FAISS.from_documents(docs, embedding_model)
|
| 53 |
return vector_db
|
| 54 |
|
| 55 |
-
|
|
|
|
| 56 |
"""Creates the LangChain conversational retrieval chain."""
|
| 57 |
-
prompt_template = """You are a polite and professional AI assistant for the PM-KISAN scheme
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
QA_PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
| 59 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True, output_key='answer')
|
|
|
|
| 60 |
chain = ConversationalRetrievalChain.from_llm(
|
| 61 |
-
llm=
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
| 63 |
)
|
| 64 |
return chain
|
| 65 |
|
| 66 |
-
|
| 67 |
-
"""Initializes and returns the QA chain."""
|
| 68 |
-
global _qa_chain
|
| 69 |
-
if _qa_chain is None:
|
| 70 |
-
llm = load_llm()
|
| 71 |
-
vector_db = load_and_process_pdf()
|
| 72 |
-
_qa_chain = create_conversational_chain(llm, vector_db)
|
| 73 |
-
return _qa_chain
|
| 74 |
-
|
| 75 |
def run_fairness_audit():
|
| 76 |
-
"""Performs
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
'query': ["loan for my farm", "help for my crops", "scheme for women", "grant for female farmer"],
|
| 79 |
'gender_text': ['male', 'male', 'female', 'female'],
|
| 80 |
'expected_doc': ['doc1', 'doc1', 'doc2', 'doc2']
|
| 81 |
-
}
|
|
|
|
|
|
|
| 82 |
def simulate_retriever(query):
|
| 83 |
return "doc2" if "women" in query or "female" in query else "doc1"
|
| 84 |
df_display['retrieved_doc'] = df_display['query'].apply(simulate_retriever)
|
| 85 |
df_display['favorable_outcome'] = (df_display['retrieved_doc'] == df_display['expected_doc']).astype(int)
|
| 86 |
-
|
| 87 |
df_for_aif = pd.DataFrame()
|
| 88 |
df_for_aif['gender'] = df_display['gender_text'].map({'male': 1, 'female': 0})
|
| 89 |
df_for_aif['favorable_outcome'] = df_display['favorable_outcome']
|
| 90 |
|
| 91 |
-
aif_dataset = StandardDataset(df_for_aif,
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
metric = BinaryLabelDatasetMetric(aif_dataset, unprivileged_groups=[{'gender': 0}], privileged_groups=[{'gender': 1}])
|
| 94 |
spd = metric.statistical_parity_difference()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
**Raw Audit Data:**
|
| 102 |
-
```
|
| 103 |
-
{df_display.to_string()}
|
| 104 |
-
```
|
| 105 |
-
"""
|
| 106 |
-
return report
|
| 107 |
-
|
| 108 |
-
# --- Gradio UI ---
|
| 109 |
-
def chat_response(message, history):
|
| 110 |
-
"""Handles the user's message and returns the bot's response."""
|
| 111 |
-
qa_chain = get_qa_chain()
|
| 112 |
-
result = qa_chain.invoke({"question": message})
|
| 113 |
-
response = result["answer"]
|
| 114 |
-
|
| 115 |
-
# Add sources to the response
|
| 116 |
-
source_docs = result.get("source_documents", [])
|
| 117 |
-
if source_docs:
|
| 118 |
-
response += "\n\n--- \n*Sources used to generate this answer:*"
|
| 119 |
-
for i, doc in enumerate(source_docs):
|
| 120 |
-
cleaned_content = ' '.join(doc.page_content.split())
|
| 121 |
-
response += f"\n\n> **Source {i+1}:** \"{cleaned_content[:150]}...\""
|
| 122 |
-
|
| 123 |
-
# Yield response for streaming effect
|
| 124 |
-
for i in range(len(response)):
|
| 125 |
-
time.sleep(0.005)
|
| 126 |
-
yield response[:i+1]
|
| 127 |
-
|
| 128 |
-
# Initialize the AI model on startup
|
| 129 |
-
print("Initializing AI Chain...")
|
| 130 |
-
get_qa_chain()
|
| 131 |
-
print("AI Chain Ready.")
|
| 132 |
-
|
| 133 |
-
with gr.Blocks(theme=gr.themes.Soft(), title="Sahay AI") as demo:
|
| 134 |
-
gr.Markdown("# 🇮🇳 Chat with Sahay AI 💬")
|
| 135 |
-
gr.Markdown("Your trusted guide to the PM-KISAN scheme, powered by IBM Granite.")
|
| 136 |
|
| 137 |
-
with
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
msg.submit(lambda: "", None, msg) # Clear textbox on submit
|
| 161 |
-
submit_btn.click(lambda: "", None, msg) # Clear textbox on submit
|
| 162 |
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
|
|
|
|
|
|
| 167 |
|
| 168 |
-
if
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
import torch
|
| 3 |
import fitz # PyMuPDF
|
| 4 |
+
from transformers import AutoTokenizer, pipeline, AutoModelForSeq2SeqLM # Import for T5 model
|
| 5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
from langchain_community.vectorstores import FAISS
|
| 7 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
|
| 9 |
from langchain.chains import ConversationalRetrievalChain
|
| 10 |
from langchain.memory import ConversationBufferMemory
|
| 11 |
from langchain.prompts import PromptTemplate
|
| 12 |
+
|
| 13 |
+
# For Fairness Audit
|
| 14 |
import pandas as pd
|
| 15 |
from aif360.datasets import StandardDataset
|
| 16 |
from aif360.metrics import BinaryLabelDatasetMetric
|
|
|
|
| 17 |
|
| 18 |
+
# --- Page Configuration ---
|
| 19 |
+
st.set_page_config(
|
| 20 |
+
page_title="Sahay AI 🇮🇳",
|
| 21 |
+
page_icon="🤖",
|
| 22 |
+
layout="wide",
|
| 23 |
+
initial_sidebar_state="expanded"
|
| 24 |
+
)
|
| 25 |
|
| 26 |
+
# --- Caching for Performance ---
|
| 27 |
+
@st.cache_resource
|
| 28 |
def load_llm():
|
| 29 |
+
"""
|
| 30 |
+
Loads a smaller, CPU-friendly model (FLAN-T5-Base) for better performance
|
| 31 |
+
on the free Hugging Face Spaces hardware.
|
| 32 |
+
"""
|
| 33 |
+
# Using a smaller, CPU-compatible model to ensure the app is fast and responsive.
|
| 34 |
+
llm_model_name = "google/flan-t5-base"
|
| 35 |
+
|
| 36 |
+
tokenizer = AutoTokenizer.from_pretrained(llm_model_name)
|
| 37 |
+
# Use AutoModelForSeq2SeqLM for T5 models
|
| 38 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(llm_model_name)
|
| 39 |
+
|
| 40 |
+
pipe = pipeline(
|
| 41 |
+
"text2text-generation", # T5 models use this pipeline type
|
| 42 |
+
model=model,
|
| 43 |
+
tokenizer=tokenizer,
|
| 44 |
+
max_length=512
|
| 45 |
+
)
|
| 46 |
+
return HuggingFacePipeline(pipeline=pipe)
|
| 47 |
+
|
| 48 |
+
@st.cache_resource
|
| 49 |
+
def load_and_process_pdf(pdf_path):
|
| 50 |
+
"""Loads, chunks, and embeds the PDF into a FAISS vector store using IBM's model."""
|
| 51 |
+
try:
|
| 52 |
+
doc = fitz.open(pdf_path)
|
| 53 |
+
text = "".join(page.get_text() for page in doc)
|
| 54 |
+
if not text:
|
| 55 |
+
st.error("Could not extract text from the PDF.")
|
| 56 |
+
return None
|
| 57 |
+
except Exception as e:
|
| 58 |
+
st.error(f"Error reading PDF file: {e}. Make sure 'PMKisanSamanNidhi.PDF' is uploaded to the Space.")
|
| 59 |
+
return None
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
|
| 62 |
docs = text_splitter.create_documents([text])
|
| 63 |
+
|
| 64 |
+
# Still using the powerful IBM embedding model for multilingual understanding
|
| 65 |
+
model_name = "ibm-granite/granite-embedding-278m-multilingual"
|
| 66 |
+
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
|
| 67 |
+
|
| 68 |
vector_db = FAISS.from_documents(docs, embedding_model)
|
| 69 |
return vector_db
|
| 70 |
|
| 71 |
+
# --- Conversational Chain ---
|
| 72 |
+
def create_conversational_chain(_llm, _vector_db):
|
| 73 |
"""Creates the LangChain conversational retrieval chain."""
|
| 74 |
+
prompt_template = """You are a polite and professional AI assistant for the PM-KISAN scheme.
|
| 75 |
+
Use the following context to answer the user's question precisely.
|
| 76 |
+
If the question is not related to the provided context, you must state: "I can only answer questions related to the PM-KISAN scheme."
|
| 77 |
+
Do not make up information.
|
| 78 |
+
|
| 79 |
+
Context: {context}
|
| 80 |
+
Question: {question}
|
| 81 |
+
|
| 82 |
+
Helpful Answer:"""
|
| 83 |
+
|
| 84 |
QA_PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
| 85 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True, output_key='answer')
|
| 86 |
+
|
| 87 |
chain = ConversationalRetrievalChain.from_llm(
|
| 88 |
+
llm=_llm,
|
| 89 |
+
retriever=_vector_db.as_retriever(search_kwargs={'k': 3}),
|
| 90 |
+
memory=memory,
|
| 91 |
+
return_source_documents=True,
|
| 92 |
+
combine_docs_chain_kwargs={"prompt": QA_PROMPT}
|
| 93 |
)
|
| 94 |
return chain
|
| 95 |
|
| 96 |
+
# --- IBM AIF360 Fairness Audit ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
def run_fairness_audit():
|
| 98 |
+
"""Performs and displays a simulated fairness audit."""
|
| 99 |
+
st.subheader("🤖 IBM AIF360 - Fairness Audit")
|
| 100 |
+
st.info("""
|
| 101 |
+
This is a simulation to demonstrate how we can check for bias in our information retriever.
|
| 102 |
+
A fair system should provide equally good information to all demographic groups.
|
| 103 |
+
""")
|
| 104 |
+
test_data = {
|
| 105 |
'query': ["loan for my farm", "help for my crops", "scheme for women", "grant for female farmer"],
|
| 106 |
'gender_text': ['male', 'male', 'female', 'female'],
|
| 107 |
'expected_doc': ['doc1', 'doc1', 'doc2', 'doc2']
|
| 108 |
+
}
|
| 109 |
+
df_display = pd.DataFrame(test_data)
|
| 110 |
+
|
| 111 |
def simulate_retriever(query):
|
| 112 |
return "doc2" if "women" in query or "female" in query else "doc1"
|
| 113 |
df_display['retrieved_doc'] = df_display['query'].apply(simulate_retriever)
|
| 114 |
df_display['favorable_outcome'] = (df_display['retrieved_doc'] == df_display['expected_doc']).astype(int)
|
| 115 |
+
|
| 116 |
df_for_aif = pd.DataFrame()
|
| 117 |
df_for_aif['gender'] = df_display['gender_text'].map({'male': 1, 'female': 0})
|
| 118 |
df_for_aif['favorable_outcome'] = df_display['favorable_outcome']
|
| 119 |
|
| 120 |
+
aif_dataset = StandardDataset(df_for_aif,
|
| 121 |
+
label_name='favorable_outcome',
|
| 122 |
+
favorable_classes=[1],
|
| 123 |
+
protected_attribute_names=['gender'],
|
| 124 |
+
privileged_classes=[[1]])
|
| 125 |
+
|
| 126 |
metric = BinaryLabelDatasetMetric(aif_dataset, unprivileged_groups=[{'gender': 0}], privileged_groups=[{'gender': 1}])
|
| 127 |
spd = metric.statistical_parity_difference()
|
| 128 |
+
|
| 129 |
+
st.markdown("---")
|
| 130 |
+
col1, col2 = st.columns(2)
|
| 131 |
+
with col1:
|
| 132 |
+
st.metric(label="**Metric: Statistical Parity Difference (SPD)**", value=f"{spd:.4f}")
|
| 133 |
+
with col2:
|
| 134 |
+
st.success("An SPD of **0.0** indicates perfect fairness in this simulation.")
|
| 135 |
|
| 136 |
+
with st.expander("Show Raw Audit Data"):
|
| 137 |
+
st.dataframe(df_display)
|
| 138 |
+
|
| 139 |
+
# --- Main Application UI ---
|
| 140 |
+
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
+
with st.sidebar:
|
| 143 |
+
st.image("https://upload.wikimedia.org/wikipedia/commons/5/51/IBM_logo.svg", width=100)
|
| 144 |
+
st.title("🇮🇳 Sahay AI")
|
| 145 |
+
st.markdown("### About")
|
| 146 |
+
st.markdown("An AI assistant for the **PM-KISAN** scheme, built with IBM's multilingual embedding model.")
|
| 147 |
+
st.markdown("---")
|
| 148 |
+
|
| 149 |
+
st.markdown("### Actions")
|
| 150 |
+
if st.button("Run Fairness Audit", use_container_width=True):
|
| 151 |
+
st.session_state.run_audit = True
|
| 152 |
+
st.markdown("---")
|
| 153 |
+
|
| 154 |
+
st.markdown("### Connect")
|
| 155 |
+
st.markdown("📱 [Try the WhatsApp Bot](https://wa.me/15551234567?text=Hello%20Sahay%20AI!)") # Replace with your number
|
| 156 |
+
st.markdown("⭐ [View Project on GitHub](https://github.com)")
|
| 157 |
+
st.markdown("---")
|
| 158 |
+
|
| 159 |
+
st.header("Chat with Sahay AI 💬")
|
| 160 |
+
st.markdown("Your trusted guide to the PM-KISAN scheme.")
|
| 161 |
+
|
| 162 |
+
if st.session_state.get('run_audit', False):
|
| 163 |
+
run_fairness_audit()
|
| 164 |
+
st.session_state.run_audit = False
|
|
|
|
|
|
|
| 165 |
|
| 166 |
+
if "messages" not in st.session_state:
|
| 167 |
+
st.session_state.messages = []
|
| 168 |
+
st.session_state.messages.append({
|
| 169 |
+
"role": "assistant",
|
| 170 |
+
"content": "Welcome! How can I help you understand the PM-KISAN scheme today? You can ask me questions like:\n- What is this scheme about?\n- Who is eligible?\n- *इस योजना के लिए कौन पात्र है?*"
|
| 171 |
+
})
|
| 172 |
|
| 173 |
+
if "qa_chain" not in st.session_state:
|
| 174 |
+
with st.spinner("🚀 Initializing Sahay AI... This may take a moment."):
|
| 175 |
+
llm = load_llm()
|
| 176 |
+
vector_db = load_and_process_pdf("PMKisanSamanNidhi.PDF")
|
| 177 |
+
if vector_db:
|
| 178 |
+
st.session_state.qa_chain = create_conversational_chain(llm, vector_db)
|
| 179 |
+
else:
|
| 180 |
+
st.error("Application could not start. Please check the PDF file is uploaded correctly.")
|
| 181 |
+
st.stop()
|
| 182 |
+
|
| 183 |
+
for message in st.session_state.messages:
|
| 184 |
+
with st.chat_message(message["role"]):
|
| 185 |
+
st.markdown(message["content"])
|
| 186 |
+
|
| 187 |
+
if prompt := st.chat_input("Ask a question about the PM-KISAN scheme..."):
|
| 188 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 189 |
+
with st.chat_message("user"):
|
| 190 |
+
st.markdown(prompt)
|
| 191 |
+
|
| 192 |
+
with st.chat_message("assistant"):
|
| 193 |
+
with st.spinner("🧠 Thinking..."):
|
| 194 |
+
if "qa_chain" in st.session_state:
|
| 195 |
+
result = st.session_state.qa_chain.invoke({"question": prompt})
|
| 196 |
+
response = result["answer"]
|
| 197 |
+
source_docs = result.get("source_documents", [])
|
| 198 |
+
|
| 199 |
+
if source_docs:
|
| 200 |
+
response += "\n\n--- \n*Sources used to generate this answer:*"
|
| 201 |
+
for i, doc in enumerate(source_docs):
|
| 202 |
+
cleaned_content = ' '.join(doc.page_content.split())
|
| 203 |
+
response += f"\n\n> **Source {i+1}:** \"{cleaned_content[:150]}...\""
|
| 204 |
+
|
| 205 |
+
st.markdown(response)
|
| 206 |
+
else:
|
| 207 |
+
response = "Sorry, the application is not properly initialized."
|
| 208 |
+
st.error(response)
|
| 209 |
+
|
| 210 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|