Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- requirements.txt +0 -0
- streamlit_app.py +157 -0
requirements.txt
ADDED
|
Binary file (8.18 kB). View file
|
|
|
streamlit_app.py
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import Literal
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import os
|
| 5 |
+
from llamaapi import LlamaAPI
|
| 6 |
+
from langchain_experimental.llms import ChatLlamaAPI
|
| 7 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 8 |
+
import pinecone
|
| 9 |
+
from langchain.vectorstores import Pinecone
|
| 10 |
+
from langchain.prompts import PromptTemplate
|
| 11 |
+
from langchain.chains import RetrievalQA
|
| 12 |
+
import streamlit.components.v1 as components
|
| 13 |
+
|
| 14 |
+
HUGGINGFACEHUB_API_TOKEN = st.secrets['HUGGINGFACEHUB_API_TOKEN']
|
| 15 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = HUGGINGFACEHUB_API_TOKEN
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
@dataclass
|
| 19 |
+
class Message:
|
| 20 |
+
"""Class for keeping track of a chat message."""
|
| 21 |
+
origin: Literal["human", "ai"]
|
| 22 |
+
message: str
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def load_css():
|
| 26 |
+
with open("static/styles.css", "r") as f:
|
| 27 |
+
css = f"<style>{f.read()}</style>"
|
| 28 |
+
st.markdown(css, unsafe_allow_html=True)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def download_hugging_face_embeddings():
|
| 32 |
+
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
|
| 33 |
+
return embeddings
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def initialize_session_state():
|
| 37 |
+
if "history" not in st.session_state:
|
| 38 |
+
st.session_state.history = []
|
| 39 |
+
if "conversation" not in st.session_state:
|
| 40 |
+
llama = LlamaAPI(st.secrets["LlamaAPI"])
|
| 41 |
+
model = ChatLlamaAPI(client=llama)
|
| 42 |
+
|
| 43 |
+
embeddings = download_hugging_face_embeddings()
|
| 44 |
+
|
| 45 |
+
# Initializing the Pinecone
|
| 46 |
+
pinecone.init(
|
| 47 |
+
api_key=st.secrets["PINECONE_API_KEY"], # find at app.pinecone.io
|
| 48 |
+
environment=st.secrets["PINECONE_API_ENV"] # next to api key in console
|
| 49 |
+
)
|
| 50 |
+
index_name = "legal-advisor" # put in the name of your pinecone index here
|
| 51 |
+
|
| 52 |
+
docsearch = Pinecone.from_existing_index(index_name, embeddings)
|
| 53 |
+
|
| 54 |
+
prompt_template = """
|
| 55 |
+
You are a trained bot to guide people about Indian Law. You will answer user's query with your knowledge and the context provided.
|
| 56 |
+
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
|
| 57 |
+
Do not say thank you and tell you are an AI Assistant and be open about everything.
|
| 58 |
+
Use the following pieces of context to answer the users question.
|
| 59 |
+
Context: {context}
|
| 60 |
+
Question: {question}
|
| 61 |
+
Only return the helpful answer below and nothing else.
|
| 62 |
+
Helpful answer:
|
| 63 |
+
"""
|
| 64 |
+
|
| 65 |
+
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
| 66 |
+
chain_type_kwargs = {"prompt": PROMPT}
|
| 67 |
+
retrieval_chain = RetrievalQA.from_chain_type(llm=model,
|
| 68 |
+
chain_type="stuff",
|
| 69 |
+
retriever=docsearch.as_retriever(
|
| 70 |
+
search_kwargs={'k': 2}),
|
| 71 |
+
return_source_documents=True,
|
| 72 |
+
chain_type_kwargs=chain_type_kwargs)
|
| 73 |
+
|
| 74 |
+
st.session_state.conversation = retrieval_chain
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def on_click_callback():
|
| 78 |
+
human_prompt = st.session_state.human_prompt
|
| 79 |
+
response = st.session_state.conversation(
|
| 80 |
+
human_prompt
|
| 81 |
+
)
|
| 82 |
+
llm_response = response['result']
|
| 83 |
+
print(llm_response)
|
| 84 |
+
st.session_state.history.append(
|
| 85 |
+
Message("human", human_prompt)
|
| 86 |
+
)
|
| 87 |
+
st.session_state.history.append(
|
| 88 |
+
Message("ai", llm_response)
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
load_css()
|
| 93 |
+
initialize_session_state()
|
| 94 |
+
|
| 95 |
+
st.title("Hello Custom CSS Chatbot 🤖")
|
| 96 |
+
|
| 97 |
+
chat_placeholder = st.container()
|
| 98 |
+
prompt_placeholder = st.form("chat-form")
|
| 99 |
+
|
| 100 |
+
with chat_placeholder:
|
| 101 |
+
for chat in st.session_state.history:
|
| 102 |
+
div = f"""
|
| 103 |
+
<div class="chat-row
|
| 104 |
+
{'' if chat.origin == 'ai' else 'row-reverse'}">
|
| 105 |
+
<img class="chat-icon" src="app/static/{
|
| 106 |
+
'ai_icon.png' if chat.origin == 'ai'
|
| 107 |
+
else 'user_icon.png'}"
|
| 108 |
+
width=32 height=32>
|
| 109 |
+
<div class="chat-bubble
|
| 110 |
+
{'ai-bubble' if chat.origin == 'ai' else 'human-bubble'}">
|
| 111 |
+
​{chat.message}
|
| 112 |
+
</div>
|
| 113 |
+
</div>
|
| 114 |
+
"""
|
| 115 |
+
st.markdown(div, unsafe_allow_html=True)
|
| 116 |
+
|
| 117 |
+
for _ in range(3):
|
| 118 |
+
st.markdown("")
|
| 119 |
+
|
| 120 |
+
with prompt_placeholder:
|
| 121 |
+
st.markdown("**Chat**")
|
| 122 |
+
cols = st.columns((6, 1))
|
| 123 |
+
cols[0].text_input(
|
| 124 |
+
"Chat",
|
| 125 |
+
value="Hello bot",
|
| 126 |
+
label_visibility="collapsed",
|
| 127 |
+
key="human_prompt",
|
| 128 |
+
)
|
| 129 |
+
cols[1].form_submit_button(
|
| 130 |
+
"Submit",
|
| 131 |
+
type="primary",
|
| 132 |
+
on_click=on_click_callback,
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
components.html("""
|
| 136 |
+
<script>
|
| 137 |
+
const streamlitDoc = window.parent.document;
|
| 138 |
+
|
| 139 |
+
const buttons = Array.from(
|
| 140 |
+
streamlitDoc.querySelectorAll('.stButton > button')
|
| 141 |
+
);
|
| 142 |
+
const submitButton = buttons.find(
|
| 143 |
+
el => el.innerText === 'Submit'
|
| 144 |
+
);
|
| 145 |
+
|
| 146 |
+
streamlitDoc.addEventListener('keydown', function(e) {
|
| 147 |
+
switch (e.key) {
|
| 148 |
+
case 'Enter':
|
| 149 |
+
submitButton.click();
|
| 150 |
+
break;
|
| 151 |
+
}
|
| 152 |
+
});
|
| 153 |
+
</script>
|
| 154 |
+
""",
|
| 155 |
+
height=0,
|
| 156 |
+
width=0,
|
| 157 |
+
)
|