Spaces:
Running
on
Zero
Running
on
Zero
Upload 26 files
Browse files- ppd/models/attention.py +59 -0
- ppd/models/depth_anything_v2/dinov2.py +416 -0
- ppd/models/depth_anything_v2/dinov2_layers/__init__.py +11 -0
- ppd/models/depth_anything_v2/dinov2_layers/attention.py +83 -0
- ppd/models/depth_anything_v2/dinov2_layers/block.py +252 -0
- ppd/models/depth_anything_v2/dinov2_layers/drop_path.py +35 -0
- ppd/models/depth_anything_v2/dinov2_layers/layer_scale.py +28 -0
- ppd/models/depth_anything_v2/dinov2_layers/mlp.py +41 -0
- ppd/models/depth_anything_v2/dinov2_layers/patch_embed.py +89 -0
- ppd/models/depth_anything_v2/dinov2_layers/swiglu_ffn.py +63 -0
- ppd/models/depth_anything_v2/dpt.py +227 -0
- ppd/models/depth_anything_v2/util/blocks.py +148 -0
- ppd/models/depth_anything_v2/util/transform.py +158 -0
- ppd/models/dit.py +234 -0
- ppd/models/dit_wo_rope.py +376 -0
- ppd/models/mlp.py +261 -0
- ppd/models/patch_embed.py +86 -0
- ppd/models/ppd.py +97 -0
- ppd/models/rope.py +186 -0
- ppd/utils/align_depth_func.py +40 -0
- ppd/utils/depth2pcd.py +55 -0
- ppd/utils/sampler.py +73 -0
- ppd/utils/schedule.py +54 -0
- ppd/utils/set_seed.py +13 -0
- ppd/utils/timesteps.py +39 -0
- ppd/utils/transform.py +68 -0
ppd/models/attention.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
class Attention(nn.Module):
|
| 6 |
+
|
| 7 |
+
def __init__(
|
| 8 |
+
self,
|
| 9 |
+
dim: int,
|
| 10 |
+
num_heads: int = 8,
|
| 11 |
+
qkv_bias: bool = False,
|
| 12 |
+
qk_norm: bool = False,
|
| 13 |
+
rope=None,
|
| 14 |
+
fused_attn: bool = True, # use F.scaled_dot_product_attention or not
|
| 15 |
+
attn_drop: float = 0.,
|
| 16 |
+
proj_drop: float = 0.,
|
| 17 |
+
norm_layer: nn.Module = nn.LayerNorm,
|
| 18 |
+
) -> None:
|
| 19 |
+
super().__init__()
|
| 20 |
+
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
| 21 |
+
self.num_heads = num_heads
|
| 22 |
+
self.head_dim = dim // num_heads
|
| 23 |
+
self.scale = self.head_dim ** -0.5
|
| 24 |
+
self.fused_attn = fused_attn
|
| 25 |
+
|
| 26 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 27 |
+
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
| 28 |
+
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
| 29 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 30 |
+
self.proj = nn.Linear(dim, dim)
|
| 31 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 32 |
+
self.rope = rope
|
| 33 |
+
|
| 34 |
+
def forward(self, x: torch.Tensor, pos=None) -> torch.Tensor:
|
| 35 |
+
B, N, C = x.shape
|
| 36 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
| 37 |
+
q, k, v = qkv.unbind(0)
|
| 38 |
+
q, k = self.q_norm(q), self.k_norm(k)
|
| 39 |
+
|
| 40 |
+
if self.rope is not None:
|
| 41 |
+
q = self.rope(q, pos)
|
| 42 |
+
k = self.rope(k, pos)
|
| 43 |
+
|
| 44 |
+
if self.fused_attn:
|
| 45 |
+
x = F.scaled_dot_product_attention(
|
| 46 |
+
q, k, v,
|
| 47 |
+
dropout_p=self.attn_drop.p if self.training else 0.,
|
| 48 |
+
)
|
| 49 |
+
else:
|
| 50 |
+
q = q * self.scale
|
| 51 |
+
attn = q @ k.transpose(-2, -1)
|
| 52 |
+
attn = attn.softmax(dim=-1)
|
| 53 |
+
attn = self.attn_drop(attn)
|
| 54 |
+
x = attn @ v
|
| 55 |
+
|
| 56 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
| 57 |
+
x = self.proj(x)
|
| 58 |
+
x = self.proj_drop(x)
|
| 59 |
+
return x
|
ppd/models/depth_anything_v2/dinov2.py
ADDED
|
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
| 4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
# References:
|
| 7 |
+
# https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
|
| 8 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
| 9 |
+
|
| 10 |
+
from functools import partial
|
| 11 |
+
import math
|
| 12 |
+
import logging
|
| 13 |
+
from typing import Sequence, Tuple, Union, Callable
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
import torch.nn as nn
|
| 17 |
+
import torch.utils.checkpoint
|
| 18 |
+
from torch.nn.init import trunc_normal_
|
| 19 |
+
|
| 20 |
+
from .dinov2_layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
logger = logging.getLogger("dinov2")
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
|
| 27 |
+
if not depth_first and include_root:
|
| 28 |
+
fn(module=module, name=name)
|
| 29 |
+
for child_name, child_module in module.named_children():
|
| 30 |
+
child_name = ".".join((name, child_name)) if name else child_name
|
| 31 |
+
named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
|
| 32 |
+
if depth_first and include_root:
|
| 33 |
+
fn(module=module, name=name)
|
| 34 |
+
return module
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class BlockChunk(nn.ModuleList):
|
| 38 |
+
def forward(self, x):
|
| 39 |
+
for b in self:
|
| 40 |
+
x = b(x)
|
| 41 |
+
return x
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class DinoVisionTransformer(nn.Module):
|
| 45 |
+
def __init__(
|
| 46 |
+
self,
|
| 47 |
+
img_size=224,
|
| 48 |
+
patch_size=16,
|
| 49 |
+
in_chans=3,
|
| 50 |
+
embed_dim=768,
|
| 51 |
+
depth=12,
|
| 52 |
+
num_heads=12,
|
| 53 |
+
mlp_ratio=4.0,
|
| 54 |
+
qkv_bias=True,
|
| 55 |
+
ffn_bias=True,
|
| 56 |
+
proj_bias=True,
|
| 57 |
+
drop_path_rate=0.0,
|
| 58 |
+
drop_path_uniform=False,
|
| 59 |
+
init_values=None, # for layerscale: None or 0 => no layerscale
|
| 60 |
+
embed_layer=PatchEmbed,
|
| 61 |
+
act_layer=nn.GELU,
|
| 62 |
+
block_fn=Block,
|
| 63 |
+
ffn_layer="mlp",
|
| 64 |
+
block_chunks=1,
|
| 65 |
+
num_register_tokens=0,
|
| 66 |
+
interpolate_antialias=False,
|
| 67 |
+
interpolate_offset=0.1,
|
| 68 |
+
):
|
| 69 |
+
"""
|
| 70 |
+
Args:
|
| 71 |
+
img_size (int, tuple): input image size
|
| 72 |
+
patch_size (int, tuple): patch size
|
| 73 |
+
in_chans (int): number of input channels
|
| 74 |
+
embed_dim (int): embedding dimension
|
| 75 |
+
depth (int): depth of transformer
|
| 76 |
+
num_heads (int): number of attention heads
|
| 77 |
+
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
| 78 |
+
qkv_bias (bool): enable bias for qkv if True
|
| 79 |
+
proj_bias (bool): enable bias for proj in attn if True
|
| 80 |
+
ffn_bias (bool): enable bias for ffn if True
|
| 81 |
+
drop_path_rate (float): stochastic depth rate
|
| 82 |
+
drop_path_uniform (bool): apply uniform drop rate across blocks
|
| 83 |
+
weight_init (str): weight init scheme
|
| 84 |
+
init_values (float): layer-scale init values
|
| 85 |
+
embed_layer (nn.Module): patch embedding layer
|
| 86 |
+
act_layer (nn.Module): MLP activation layer
|
| 87 |
+
block_fn (nn.Module): transformer block class
|
| 88 |
+
ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
|
| 89 |
+
block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
|
| 90 |
+
num_register_tokens: (int) number of extra cls tokens (so-called "registers")
|
| 91 |
+
interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings
|
| 92 |
+
interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
|
| 93 |
+
"""
|
| 94 |
+
super().__init__()
|
| 95 |
+
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
| 96 |
+
|
| 97 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
| 98 |
+
self.num_tokens = 1
|
| 99 |
+
self.n_blocks = depth
|
| 100 |
+
self.num_heads = num_heads
|
| 101 |
+
self.patch_size = patch_size
|
| 102 |
+
self.num_register_tokens = num_register_tokens
|
| 103 |
+
self.interpolate_antialias = interpolate_antialias
|
| 104 |
+
self.interpolate_offset = interpolate_offset
|
| 105 |
+
|
| 106 |
+
self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
| 107 |
+
num_patches = self.patch_embed.num_patches
|
| 108 |
+
|
| 109 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
| 110 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
|
| 111 |
+
assert num_register_tokens >= 0
|
| 112 |
+
self.register_tokens = (
|
| 113 |
+
nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
if drop_path_uniform is True:
|
| 117 |
+
dpr = [drop_path_rate] * depth
|
| 118 |
+
else:
|
| 119 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
| 120 |
+
|
| 121 |
+
if ffn_layer == "mlp":
|
| 122 |
+
logger.info("using MLP layer as FFN")
|
| 123 |
+
ffn_layer = Mlp
|
| 124 |
+
elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
|
| 125 |
+
logger.info("using SwiGLU layer as FFN")
|
| 126 |
+
ffn_layer = SwiGLUFFNFused
|
| 127 |
+
elif ffn_layer == "identity":
|
| 128 |
+
logger.info("using Identity layer as FFN")
|
| 129 |
+
|
| 130 |
+
def f(*args, **kwargs):
|
| 131 |
+
return nn.Identity()
|
| 132 |
+
|
| 133 |
+
ffn_layer = f
|
| 134 |
+
else:
|
| 135 |
+
raise NotImplementedError
|
| 136 |
+
|
| 137 |
+
blocks_list = [
|
| 138 |
+
block_fn(
|
| 139 |
+
dim=embed_dim,
|
| 140 |
+
num_heads=num_heads,
|
| 141 |
+
mlp_ratio=mlp_ratio,
|
| 142 |
+
qkv_bias=qkv_bias,
|
| 143 |
+
proj_bias=proj_bias,
|
| 144 |
+
ffn_bias=ffn_bias,
|
| 145 |
+
drop_path=dpr[i],
|
| 146 |
+
norm_layer=norm_layer,
|
| 147 |
+
act_layer=act_layer,
|
| 148 |
+
ffn_layer=ffn_layer,
|
| 149 |
+
init_values=init_values,
|
| 150 |
+
)
|
| 151 |
+
for i in range(depth)
|
| 152 |
+
]
|
| 153 |
+
if block_chunks > 0:
|
| 154 |
+
self.chunked_blocks = True
|
| 155 |
+
chunked_blocks = []
|
| 156 |
+
chunksize = depth // block_chunks
|
| 157 |
+
for i in range(0, depth, chunksize):
|
| 158 |
+
# this is to keep the block index consistent if we chunk the block list
|
| 159 |
+
chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
|
| 160 |
+
self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
|
| 161 |
+
else:
|
| 162 |
+
self.chunked_blocks = False
|
| 163 |
+
self.blocks = nn.ModuleList(blocks_list)
|
| 164 |
+
|
| 165 |
+
self.norm = norm_layer(embed_dim)
|
| 166 |
+
self.head = nn.Identity()
|
| 167 |
+
|
| 168 |
+
self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
|
| 169 |
+
|
| 170 |
+
self.init_weights()
|
| 171 |
+
|
| 172 |
+
def init_weights(self):
|
| 173 |
+
trunc_normal_(self.pos_embed, std=0.02)
|
| 174 |
+
nn.init.normal_(self.cls_token, std=1e-6)
|
| 175 |
+
if self.register_tokens is not None:
|
| 176 |
+
nn.init.normal_(self.register_tokens, std=1e-6)
|
| 177 |
+
named_apply(init_weights_vit_timm, self)
|
| 178 |
+
|
| 179 |
+
def interpolate_pos_encoding(self, x, w, h):
|
| 180 |
+
previous_dtype = x.dtype
|
| 181 |
+
npatch = x.shape[1] - 1
|
| 182 |
+
N = self.pos_embed.shape[1] - 1
|
| 183 |
+
if npatch == N and w == h:
|
| 184 |
+
return self.pos_embed
|
| 185 |
+
pos_embed = self.pos_embed.float()
|
| 186 |
+
class_pos_embed = pos_embed[:, 0]
|
| 187 |
+
patch_pos_embed = pos_embed[:, 1:]
|
| 188 |
+
dim = x.shape[-1]
|
| 189 |
+
w0 = w // self.patch_size
|
| 190 |
+
h0 = h // self.patch_size
|
| 191 |
+
# we add a small number to avoid floating point error in the interpolation
|
| 192 |
+
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
| 193 |
+
# DINOv2 with register modify the interpolate_offset from 0.1 to 0.0
|
| 194 |
+
w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset
|
| 195 |
+
# w0, h0 = w0 + 0.1, h0 + 0.1
|
| 196 |
+
|
| 197 |
+
sqrt_N = math.sqrt(N)
|
| 198 |
+
sx, sy = float(w0) / sqrt_N, float(h0) / sqrt_N
|
| 199 |
+
patch_pos_embed = nn.functional.interpolate(
|
| 200 |
+
patch_pos_embed.reshape(1, int(sqrt_N), int(sqrt_N), dim).permute(0, 3, 1, 2),
|
| 201 |
+
scale_factor=(sx, sy),
|
| 202 |
+
# (int(w0), int(h0)), # to solve the upsampling shape issue
|
| 203 |
+
mode="bicubic",
|
| 204 |
+
antialias=self.interpolate_antialias
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
assert int(w0) == patch_pos_embed.shape[-2]
|
| 208 |
+
assert int(h0) == patch_pos_embed.shape[-1]
|
| 209 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
| 210 |
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
|
| 211 |
+
|
| 212 |
+
def prepare_tokens_with_masks(self, x, masks=None):
|
| 213 |
+
B, nc, w, h = x.shape
|
| 214 |
+
x = self.patch_embed(x)
|
| 215 |
+
if masks is not None:
|
| 216 |
+
x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
|
| 217 |
+
|
| 218 |
+
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
| 219 |
+
|
| 220 |
+
x = x + self.interpolate_pos_encoding(x, w, h)
|
| 221 |
+
|
| 222 |
+
if self.register_tokens is not None:
|
| 223 |
+
x = torch.cat(
|
| 224 |
+
(
|
| 225 |
+
x[:, :1],
|
| 226 |
+
self.register_tokens.expand(x.shape[0], -1, -1),
|
| 227 |
+
x[:, 1:],
|
| 228 |
+
),
|
| 229 |
+
dim=1,
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
return x
|
| 233 |
+
|
| 234 |
+
def forward_features_list(self, x_list, masks_list):
|
| 235 |
+
x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
|
| 236 |
+
for blk in self.blocks:
|
| 237 |
+
x = blk(x)
|
| 238 |
+
|
| 239 |
+
all_x = x
|
| 240 |
+
output = []
|
| 241 |
+
for x, masks in zip(all_x, masks_list):
|
| 242 |
+
x_norm = self.norm(x)
|
| 243 |
+
output.append(
|
| 244 |
+
{
|
| 245 |
+
"x_norm_clstoken": x_norm[:, 0],
|
| 246 |
+
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
|
| 247 |
+
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
|
| 248 |
+
"x_prenorm": x,
|
| 249 |
+
"masks": masks,
|
| 250 |
+
}
|
| 251 |
+
)
|
| 252 |
+
return output
|
| 253 |
+
|
| 254 |
+
def forward_features(self, x, masks=None):
|
| 255 |
+
if isinstance(x, list):
|
| 256 |
+
return self.forward_features_list(x, masks)
|
| 257 |
+
|
| 258 |
+
x = self.prepare_tokens_with_masks(x, masks)
|
| 259 |
+
|
| 260 |
+
for blk in self.blocks:
|
| 261 |
+
x = blk(x)
|
| 262 |
+
|
| 263 |
+
x_norm = self.norm(x)
|
| 264 |
+
return {
|
| 265 |
+
"x_norm_clstoken": x_norm[:, 0],
|
| 266 |
+
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
|
| 267 |
+
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
|
| 268 |
+
"x_prenorm": x,
|
| 269 |
+
"masks": masks,
|
| 270 |
+
}
|
| 271 |
+
|
| 272 |
+
def _get_intermediate_layers_not_chunked(self, x, n=1):
|
| 273 |
+
x = self.prepare_tokens_with_masks(x)
|
| 274 |
+
# If n is an int, take the n last blocks. If it's a list, take them
|
| 275 |
+
output, total_block_len = [], len(self.blocks)
|
| 276 |
+
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
| 277 |
+
for i, blk in enumerate(self.blocks):
|
| 278 |
+
x = blk(x)
|
| 279 |
+
if i in blocks_to_take:
|
| 280 |
+
output.append(x)
|
| 281 |
+
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
| 282 |
+
return output
|
| 283 |
+
|
| 284 |
+
def _get_intermediate_layers_chunked(self, x, n=1):
|
| 285 |
+
x = self.prepare_tokens_with_masks(x)
|
| 286 |
+
output, i, total_block_len = [], 0, len(self.blocks[-1])
|
| 287 |
+
# If n is an int, take the n last blocks. If it's a list, take them
|
| 288 |
+
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
| 289 |
+
for block_chunk in self.blocks:
|
| 290 |
+
for blk in block_chunk[i:]: # Passing the nn.Identity()
|
| 291 |
+
x = blk(x)
|
| 292 |
+
if i in blocks_to_take:
|
| 293 |
+
output.append(x)
|
| 294 |
+
i += 1
|
| 295 |
+
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
| 296 |
+
return output
|
| 297 |
+
|
| 298 |
+
def get_intermediate_layers(
|
| 299 |
+
self,
|
| 300 |
+
x: torch.Tensor,
|
| 301 |
+
n: Union[int, Sequence] = 1, # Layers or n last layers to take
|
| 302 |
+
reshape: bool = False,
|
| 303 |
+
return_class_token: bool = False,
|
| 304 |
+
norm=True
|
| 305 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
|
| 306 |
+
if self.chunked_blocks:
|
| 307 |
+
outputs = self._get_intermediate_layers_chunked(x, n)
|
| 308 |
+
else:
|
| 309 |
+
outputs = self._get_intermediate_layers_not_chunked(x, n)
|
| 310 |
+
if norm:
|
| 311 |
+
outputs = [self.norm(out) for out in outputs]
|
| 312 |
+
class_tokens = [out[:, 0] for out in outputs]
|
| 313 |
+
outputs = [out[:, 1 + self.num_register_tokens:] for out in outputs]
|
| 314 |
+
if reshape:
|
| 315 |
+
B, _, w, h = x.shape
|
| 316 |
+
outputs = [
|
| 317 |
+
out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
|
| 318 |
+
for out in outputs
|
| 319 |
+
]
|
| 320 |
+
if return_class_token:
|
| 321 |
+
return tuple(zip(outputs, class_tokens))
|
| 322 |
+
return tuple(outputs)
|
| 323 |
+
|
| 324 |
+
def forward(self, *args, is_training=False, **kwargs):
|
| 325 |
+
ret = self.forward_features(*args, **kwargs)
|
| 326 |
+
if is_training:
|
| 327 |
+
return ret
|
| 328 |
+
else:
|
| 329 |
+
return self.head(ret["x_norm_clstoken"])
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
def init_weights_vit_timm(module: nn.Module, name: str = ""):
|
| 333 |
+
"""ViT weight initialization, original timm impl (for reproducibility)"""
|
| 334 |
+
if isinstance(module, nn.Linear):
|
| 335 |
+
trunc_normal_(module.weight, std=0.02)
|
| 336 |
+
if module.bias is not None:
|
| 337 |
+
nn.init.zeros_(module.bias)
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
def vit_small(patch_size=16, num_register_tokens=0, **kwargs):
|
| 341 |
+
model = DinoVisionTransformer(
|
| 342 |
+
patch_size=patch_size,
|
| 343 |
+
embed_dim=384,
|
| 344 |
+
depth=12,
|
| 345 |
+
num_heads=6,
|
| 346 |
+
mlp_ratio=4,
|
| 347 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
| 348 |
+
num_register_tokens=num_register_tokens,
|
| 349 |
+
**kwargs,
|
| 350 |
+
)
|
| 351 |
+
return model
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
def vit_base(patch_size=16, num_register_tokens=0, **kwargs):
|
| 355 |
+
model = DinoVisionTransformer(
|
| 356 |
+
patch_size=patch_size,
|
| 357 |
+
embed_dim=768,
|
| 358 |
+
depth=12,
|
| 359 |
+
num_heads=12,
|
| 360 |
+
mlp_ratio=4,
|
| 361 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
| 362 |
+
num_register_tokens=num_register_tokens,
|
| 363 |
+
**kwargs,
|
| 364 |
+
)
|
| 365 |
+
return model
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
def vit_large(patch_size=16, num_register_tokens=0, **kwargs):
|
| 369 |
+
model = DinoVisionTransformer(
|
| 370 |
+
patch_size=patch_size,
|
| 371 |
+
embed_dim=1024,
|
| 372 |
+
depth=24,
|
| 373 |
+
num_heads=16,
|
| 374 |
+
mlp_ratio=4,
|
| 375 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
| 376 |
+
num_register_tokens=num_register_tokens,
|
| 377 |
+
**kwargs,
|
| 378 |
+
)
|
| 379 |
+
return model
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs):
|
| 383 |
+
"""
|
| 384 |
+
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
|
| 385 |
+
"""
|
| 386 |
+
model = DinoVisionTransformer(
|
| 387 |
+
patch_size=patch_size,
|
| 388 |
+
embed_dim=1536,
|
| 389 |
+
depth=40,
|
| 390 |
+
num_heads=24,
|
| 391 |
+
mlp_ratio=4,
|
| 392 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
| 393 |
+
num_register_tokens=num_register_tokens,
|
| 394 |
+
**kwargs,
|
| 395 |
+
)
|
| 396 |
+
return model
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
def DINOv2(model_name):
|
| 400 |
+
model_zoo = {
|
| 401 |
+
"vits": vit_small,
|
| 402 |
+
"vitb": vit_base,
|
| 403 |
+
"vitl": vit_large,
|
| 404 |
+
"vitg": vit_giant2
|
| 405 |
+
}
|
| 406 |
+
|
| 407 |
+
return model_zoo[model_name](
|
| 408 |
+
img_size=518,
|
| 409 |
+
patch_size=14,
|
| 410 |
+
init_values=1.0,
|
| 411 |
+
ffn_layer="mlp" if model_name != "vitg" else "swiglufused",
|
| 412 |
+
block_chunks=0,
|
| 413 |
+
num_register_tokens=0,
|
| 414 |
+
interpolate_antialias=False,
|
| 415 |
+
interpolate_offset=0.1
|
| 416 |
+
)
|
ppd/models/depth_anything_v2/dinov2_layers/__init__.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
from .mlp import Mlp
|
| 8 |
+
from .patch_embed import PatchEmbed
|
| 9 |
+
from .swiglu_ffn import SwiGLUFFN, SwiGLUFFNFused
|
| 10 |
+
from .block import NestedTensorBlock
|
| 11 |
+
from .attention import MemEffAttention
|
ppd/models/depth_anything_v2/dinov2_layers/attention.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
# References:
|
| 8 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
| 9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
| 10 |
+
|
| 11 |
+
import logging
|
| 12 |
+
|
| 13 |
+
from torch import Tensor
|
| 14 |
+
from torch import nn
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
logger = logging.getLogger("dinov2")
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
try:
|
| 21 |
+
from xformers.ops import memory_efficient_attention, unbind, fmha
|
| 22 |
+
|
| 23 |
+
XFORMERS_AVAILABLE = True
|
| 24 |
+
except ImportError:
|
| 25 |
+
logger.warning("xFormers not available")
|
| 26 |
+
XFORMERS_AVAILABLE = False
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class Attention(nn.Module):
|
| 30 |
+
def __init__(
|
| 31 |
+
self,
|
| 32 |
+
dim: int,
|
| 33 |
+
num_heads: int = 8,
|
| 34 |
+
qkv_bias: bool = False,
|
| 35 |
+
proj_bias: bool = True,
|
| 36 |
+
attn_drop: float = 0.0,
|
| 37 |
+
proj_drop: float = 0.0,
|
| 38 |
+
) -> None:
|
| 39 |
+
super().__init__()
|
| 40 |
+
self.num_heads = num_heads
|
| 41 |
+
head_dim = dim // num_heads
|
| 42 |
+
self.scale = head_dim**-0.5
|
| 43 |
+
|
| 44 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 45 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 46 |
+
self.proj = nn.Linear(dim, dim, bias=proj_bias)
|
| 47 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 48 |
+
|
| 49 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 50 |
+
B, N, C = x.shape
|
| 51 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 52 |
+
|
| 53 |
+
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
|
| 54 |
+
attn = q @ k.transpose(-2, -1)
|
| 55 |
+
|
| 56 |
+
attn = attn.softmax(dim=-1)
|
| 57 |
+
attn = self.attn_drop(attn)
|
| 58 |
+
|
| 59 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
| 60 |
+
x = self.proj(x)
|
| 61 |
+
x = self.proj_drop(x)
|
| 62 |
+
return x
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class MemEffAttention(Attention):
|
| 66 |
+
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
|
| 67 |
+
if not XFORMERS_AVAILABLE:
|
| 68 |
+
assert attn_bias is None, "xFormers is required for nested tensors usage"
|
| 69 |
+
return super().forward(x)
|
| 70 |
+
|
| 71 |
+
B, N, C = x.shape
|
| 72 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
| 73 |
+
|
| 74 |
+
q, k, v = unbind(qkv, 2)
|
| 75 |
+
|
| 76 |
+
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
|
| 77 |
+
x = x.reshape([B, N, C])
|
| 78 |
+
|
| 79 |
+
x = self.proj(x)
|
| 80 |
+
x = self.proj_drop(x)
|
| 81 |
+
return x
|
| 82 |
+
|
| 83 |
+
|
ppd/models/depth_anything_v2/dinov2_layers/block.py
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
# References:
|
| 8 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
| 9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
|
| 10 |
+
|
| 11 |
+
import logging
|
| 12 |
+
from typing import Callable, List, Any, Tuple, Dict
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
from torch import nn, Tensor
|
| 16 |
+
|
| 17 |
+
from .attention import Attention, MemEffAttention
|
| 18 |
+
from .drop_path import DropPath
|
| 19 |
+
from .layer_scale import LayerScale
|
| 20 |
+
from .mlp import Mlp
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
logger = logging.getLogger("dinov2")
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
try:
|
| 27 |
+
from xformers.ops import fmha
|
| 28 |
+
from xformers.ops import scaled_index_add, index_select_cat
|
| 29 |
+
|
| 30 |
+
XFORMERS_AVAILABLE = True
|
| 31 |
+
except ImportError:
|
| 32 |
+
logger.warning("xFormers not available")
|
| 33 |
+
XFORMERS_AVAILABLE = False
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class Block(nn.Module):
|
| 37 |
+
def __init__(
|
| 38 |
+
self,
|
| 39 |
+
dim: int,
|
| 40 |
+
num_heads: int,
|
| 41 |
+
mlp_ratio: float = 4.0,
|
| 42 |
+
qkv_bias: bool = False,
|
| 43 |
+
proj_bias: bool = True,
|
| 44 |
+
ffn_bias: bool = True,
|
| 45 |
+
drop: float = 0.0,
|
| 46 |
+
attn_drop: float = 0.0,
|
| 47 |
+
init_values=None,
|
| 48 |
+
drop_path: float = 0.0,
|
| 49 |
+
act_layer: Callable[..., nn.Module] = nn.GELU,
|
| 50 |
+
norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
|
| 51 |
+
attn_class: Callable[..., nn.Module] = Attention,
|
| 52 |
+
ffn_layer: Callable[..., nn.Module] = Mlp,
|
| 53 |
+
) -> None:
|
| 54 |
+
super().__init__()
|
| 55 |
+
# print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
|
| 56 |
+
self.norm1 = norm_layer(dim)
|
| 57 |
+
self.attn = attn_class(
|
| 58 |
+
dim,
|
| 59 |
+
num_heads=num_heads,
|
| 60 |
+
qkv_bias=qkv_bias,
|
| 61 |
+
proj_bias=proj_bias,
|
| 62 |
+
attn_drop=attn_drop,
|
| 63 |
+
proj_drop=drop,
|
| 64 |
+
)
|
| 65 |
+
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
| 66 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
| 67 |
+
|
| 68 |
+
self.norm2 = norm_layer(dim)
|
| 69 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 70 |
+
self.mlp = ffn_layer(
|
| 71 |
+
in_features=dim,
|
| 72 |
+
hidden_features=mlp_hidden_dim,
|
| 73 |
+
act_layer=act_layer,
|
| 74 |
+
drop=drop,
|
| 75 |
+
bias=ffn_bias,
|
| 76 |
+
)
|
| 77 |
+
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
| 78 |
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
| 79 |
+
|
| 80 |
+
self.sample_drop_ratio = drop_path
|
| 81 |
+
|
| 82 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 83 |
+
def attn_residual_func(x: Tensor) -> Tensor:
|
| 84 |
+
return self.ls1(self.attn(self.norm1(x)))
|
| 85 |
+
|
| 86 |
+
def ffn_residual_func(x: Tensor) -> Tensor:
|
| 87 |
+
return self.ls2(self.mlp(self.norm2(x)))
|
| 88 |
+
|
| 89 |
+
if self.training and self.sample_drop_ratio > 0.1:
|
| 90 |
+
# the overhead is compensated only for a drop path rate larger than 0.1
|
| 91 |
+
x = drop_add_residual_stochastic_depth(
|
| 92 |
+
x,
|
| 93 |
+
residual_func=attn_residual_func,
|
| 94 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
| 95 |
+
)
|
| 96 |
+
x = drop_add_residual_stochastic_depth(
|
| 97 |
+
x,
|
| 98 |
+
residual_func=ffn_residual_func,
|
| 99 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
| 100 |
+
)
|
| 101 |
+
elif self.training and self.sample_drop_ratio > 0.0:
|
| 102 |
+
x = x + self.drop_path1(attn_residual_func(x))
|
| 103 |
+
x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
|
| 104 |
+
else:
|
| 105 |
+
x = x + attn_residual_func(x)
|
| 106 |
+
x = x + ffn_residual_func(x)
|
| 107 |
+
return x
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def drop_add_residual_stochastic_depth(
|
| 111 |
+
x: Tensor,
|
| 112 |
+
residual_func: Callable[[Tensor], Tensor],
|
| 113 |
+
sample_drop_ratio: float = 0.0,
|
| 114 |
+
) -> Tensor:
|
| 115 |
+
# 1) extract subset using permutation
|
| 116 |
+
b, n, d = x.shape
|
| 117 |
+
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
| 118 |
+
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
| 119 |
+
x_subset = x[brange]
|
| 120 |
+
|
| 121 |
+
# 2) apply residual_func to get residual
|
| 122 |
+
residual = residual_func(x_subset)
|
| 123 |
+
|
| 124 |
+
x_flat = x.flatten(1)
|
| 125 |
+
residual = residual.flatten(1)
|
| 126 |
+
|
| 127 |
+
residual_scale_factor = b / sample_subset_size
|
| 128 |
+
|
| 129 |
+
# 3) add the residual
|
| 130 |
+
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
| 131 |
+
return x_plus_residual.view_as(x)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def get_branges_scales(x, sample_drop_ratio=0.0):
|
| 135 |
+
b, n, d = x.shape
|
| 136 |
+
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
| 137 |
+
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
| 138 |
+
residual_scale_factor = b / sample_subset_size
|
| 139 |
+
return brange, residual_scale_factor
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
|
| 143 |
+
if scaling_vector is None:
|
| 144 |
+
x_flat = x.flatten(1)
|
| 145 |
+
residual = residual.flatten(1)
|
| 146 |
+
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
| 147 |
+
else:
|
| 148 |
+
x_plus_residual = scaled_index_add(
|
| 149 |
+
x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
|
| 150 |
+
)
|
| 151 |
+
return x_plus_residual
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
attn_bias_cache: Dict[Tuple, Any] = {}
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def get_attn_bias_and_cat(x_list, branges=None):
|
| 158 |
+
"""
|
| 159 |
+
this will perform the index select, cat the tensors, and provide the attn_bias from cache
|
| 160 |
+
"""
|
| 161 |
+
batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
|
| 162 |
+
all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
|
| 163 |
+
if all_shapes not in attn_bias_cache.keys():
|
| 164 |
+
seqlens = []
|
| 165 |
+
for b, x in zip(batch_sizes, x_list):
|
| 166 |
+
for _ in range(b):
|
| 167 |
+
seqlens.append(x.shape[1])
|
| 168 |
+
attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
|
| 169 |
+
attn_bias._batch_sizes = batch_sizes
|
| 170 |
+
attn_bias_cache[all_shapes] = attn_bias
|
| 171 |
+
|
| 172 |
+
if branges is not None:
|
| 173 |
+
cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
|
| 174 |
+
else:
|
| 175 |
+
tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
|
| 176 |
+
cat_tensors = torch.cat(tensors_bs1, dim=1)
|
| 177 |
+
|
| 178 |
+
return attn_bias_cache[all_shapes], cat_tensors
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def drop_add_residual_stochastic_depth_list(
|
| 182 |
+
x_list: List[Tensor],
|
| 183 |
+
residual_func: Callable[[Tensor, Any], Tensor],
|
| 184 |
+
sample_drop_ratio: float = 0.0,
|
| 185 |
+
scaling_vector=None,
|
| 186 |
+
) -> Tensor:
|
| 187 |
+
# 1) generate random set of indices for dropping samples in the batch
|
| 188 |
+
branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
|
| 189 |
+
branges = [s[0] for s in branges_scales]
|
| 190 |
+
residual_scale_factors = [s[1] for s in branges_scales]
|
| 191 |
+
|
| 192 |
+
# 2) get attention bias and index+concat the tensors
|
| 193 |
+
attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
|
| 194 |
+
|
| 195 |
+
# 3) apply residual_func to get residual, and split the result
|
| 196 |
+
residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore
|
| 197 |
+
|
| 198 |
+
outputs = []
|
| 199 |
+
for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
|
| 200 |
+
outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
|
| 201 |
+
return outputs
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
class NestedTensorBlock(Block):
|
| 205 |
+
def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]:
|
| 206 |
+
"""
|
| 207 |
+
x_list contains a list of tensors to nest together and run
|
| 208 |
+
"""
|
| 209 |
+
assert isinstance(self.attn, MemEffAttention)
|
| 210 |
+
|
| 211 |
+
if self.training and self.sample_drop_ratio > 0.0:
|
| 212 |
+
|
| 213 |
+
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
| 214 |
+
return self.attn(self.norm1(x), attn_bias=attn_bias)
|
| 215 |
+
|
| 216 |
+
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
| 217 |
+
return self.mlp(self.norm2(x))
|
| 218 |
+
|
| 219 |
+
x_list = drop_add_residual_stochastic_depth_list(
|
| 220 |
+
x_list,
|
| 221 |
+
residual_func=attn_residual_func,
|
| 222 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
| 223 |
+
scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None,
|
| 224 |
+
)
|
| 225 |
+
x_list = drop_add_residual_stochastic_depth_list(
|
| 226 |
+
x_list,
|
| 227 |
+
residual_func=ffn_residual_func,
|
| 228 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
| 229 |
+
scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None,
|
| 230 |
+
)
|
| 231 |
+
return x_list
|
| 232 |
+
else:
|
| 233 |
+
|
| 234 |
+
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
| 235 |
+
return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
|
| 236 |
+
|
| 237 |
+
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
| 238 |
+
return self.ls2(self.mlp(self.norm2(x)))
|
| 239 |
+
|
| 240 |
+
attn_bias, x = get_attn_bias_and_cat(x_list)
|
| 241 |
+
x = x + attn_residual_func(x, attn_bias=attn_bias)
|
| 242 |
+
x = x + ffn_residual_func(x)
|
| 243 |
+
return attn_bias.split(x)
|
| 244 |
+
|
| 245 |
+
def forward(self, x_or_x_list):
|
| 246 |
+
if isinstance(x_or_x_list, Tensor):
|
| 247 |
+
return super().forward(x_or_x_list)
|
| 248 |
+
elif isinstance(x_or_x_list, list):
|
| 249 |
+
assert XFORMERS_AVAILABLE, "Please install xFormers for nested tensors usage"
|
| 250 |
+
return self.forward_nested(x_or_x_list)
|
| 251 |
+
else:
|
| 252 |
+
raise AssertionError
|
ppd/models/depth_anything_v2/dinov2_layers/drop_path.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
# References:
|
| 8 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
| 9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/drop.py
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
from torch import nn
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
|
| 16 |
+
if drop_prob == 0.0 or not training:
|
| 17 |
+
return x
|
| 18 |
+
keep_prob = 1 - drop_prob
|
| 19 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
| 20 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
| 21 |
+
if keep_prob > 0.0:
|
| 22 |
+
random_tensor.div_(keep_prob)
|
| 23 |
+
output = x * random_tensor
|
| 24 |
+
return output
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class DropPath(nn.Module):
|
| 28 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
| 29 |
+
|
| 30 |
+
def __init__(self, drop_prob=None):
|
| 31 |
+
super(DropPath, self).__init__()
|
| 32 |
+
self.drop_prob = drop_prob
|
| 33 |
+
|
| 34 |
+
def forward(self, x):
|
| 35 |
+
return drop_path(x, self.drop_prob, self.training)
|
ppd/models/depth_anything_v2/dinov2_layers/layer_scale.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
# Modified from: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L103-L110
|
| 8 |
+
|
| 9 |
+
from typing import Union
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
from torch import Tensor
|
| 13 |
+
from torch import nn
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class LayerScale(nn.Module):
|
| 17 |
+
def __init__(
|
| 18 |
+
self,
|
| 19 |
+
dim: int,
|
| 20 |
+
init_values: Union[float, Tensor] = 1e-5,
|
| 21 |
+
inplace: bool = False,
|
| 22 |
+
) -> None:
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.inplace = inplace
|
| 25 |
+
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
| 26 |
+
|
| 27 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 28 |
+
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
ppd/models/depth_anything_v2/dinov2_layers/mlp.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
# References:
|
| 8 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
| 9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/mlp.py
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
from typing import Callable, Optional
|
| 13 |
+
|
| 14 |
+
from torch import Tensor, nn
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class Mlp(nn.Module):
|
| 18 |
+
def __init__(
|
| 19 |
+
self,
|
| 20 |
+
in_features: int,
|
| 21 |
+
hidden_features: Optional[int] = None,
|
| 22 |
+
out_features: Optional[int] = None,
|
| 23 |
+
act_layer: Callable[..., nn.Module] = nn.GELU,
|
| 24 |
+
drop: float = 0.0,
|
| 25 |
+
bias: bool = True,
|
| 26 |
+
) -> None:
|
| 27 |
+
super().__init__()
|
| 28 |
+
out_features = out_features or in_features
|
| 29 |
+
hidden_features = hidden_features or in_features
|
| 30 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
|
| 31 |
+
self.act = act_layer()
|
| 32 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
|
| 33 |
+
self.drop = nn.Dropout(drop)
|
| 34 |
+
|
| 35 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 36 |
+
x = self.fc1(x)
|
| 37 |
+
x = self.act(x)
|
| 38 |
+
x = self.drop(x)
|
| 39 |
+
x = self.fc2(x)
|
| 40 |
+
x = self.drop(x)
|
| 41 |
+
return x
|
ppd/models/depth_anything_v2/dinov2_layers/patch_embed.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
# References:
|
| 8 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
| 9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
|
| 10 |
+
|
| 11 |
+
from typing import Callable, Optional, Tuple, Union
|
| 12 |
+
|
| 13 |
+
from torch import Tensor
|
| 14 |
+
import torch.nn as nn
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def make_2tuple(x):
|
| 18 |
+
if isinstance(x, tuple):
|
| 19 |
+
assert len(x) == 2
|
| 20 |
+
return x
|
| 21 |
+
|
| 22 |
+
assert isinstance(x, int)
|
| 23 |
+
return (x, x)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class PatchEmbed(nn.Module):
|
| 27 |
+
"""
|
| 28 |
+
2D image to patch embedding: (B,C,H,W) -> (B,N,D)
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
img_size: Image size.
|
| 32 |
+
patch_size: Patch token size.
|
| 33 |
+
in_chans: Number of input image channels.
|
| 34 |
+
embed_dim: Number of linear projection output channels.
|
| 35 |
+
norm_layer: Normalization layer.
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
def __init__(
|
| 39 |
+
self,
|
| 40 |
+
img_size: Union[int, Tuple[int, int]] = 224,
|
| 41 |
+
patch_size: Union[int, Tuple[int, int]] = 16,
|
| 42 |
+
in_chans: int = 3,
|
| 43 |
+
embed_dim: int = 768,
|
| 44 |
+
norm_layer: Optional[Callable] = None,
|
| 45 |
+
flatten_embedding: bool = True,
|
| 46 |
+
) -> None:
|
| 47 |
+
super().__init__()
|
| 48 |
+
|
| 49 |
+
image_HW = make_2tuple(img_size)
|
| 50 |
+
patch_HW = make_2tuple(patch_size)
|
| 51 |
+
patch_grid_size = (
|
| 52 |
+
image_HW[0] // patch_HW[0],
|
| 53 |
+
image_HW[1] // patch_HW[1],
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
self.img_size = image_HW
|
| 57 |
+
self.patch_size = patch_HW
|
| 58 |
+
self.patches_resolution = patch_grid_size
|
| 59 |
+
self.num_patches = patch_grid_size[0] * patch_grid_size[1]
|
| 60 |
+
|
| 61 |
+
self.in_chans = in_chans
|
| 62 |
+
self.embed_dim = embed_dim
|
| 63 |
+
|
| 64 |
+
self.flatten_embedding = flatten_embedding
|
| 65 |
+
|
| 66 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
|
| 67 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
| 68 |
+
|
| 69 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 70 |
+
_, _, H, W = x.shape
|
| 71 |
+
patch_H, patch_W = self.patch_size
|
| 72 |
+
|
| 73 |
+
assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
|
| 74 |
+
assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
|
| 75 |
+
|
| 76 |
+
x = self.proj(x) # B C H W
|
| 77 |
+
H, W = x.size(2), x.size(3)
|
| 78 |
+
x = x.flatten(2).transpose(1, 2) # B HW C
|
| 79 |
+
x = self.norm(x)
|
| 80 |
+
if not self.flatten_embedding:
|
| 81 |
+
x = x.reshape(-1, H, W, self.embed_dim) # B H W C
|
| 82 |
+
return x
|
| 83 |
+
|
| 84 |
+
def flops(self) -> float:
|
| 85 |
+
Ho, Wo = self.patches_resolution
|
| 86 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
| 87 |
+
if self.norm is not None:
|
| 88 |
+
flops += Ho * Wo * self.embed_dim
|
| 89 |
+
return flops
|
ppd/models/depth_anything_v2/dinov2_layers/swiglu_ffn.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
from typing import Callable, Optional
|
| 8 |
+
|
| 9 |
+
from torch import Tensor, nn
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class SwiGLUFFN(nn.Module):
|
| 14 |
+
def __init__(
|
| 15 |
+
self,
|
| 16 |
+
in_features: int,
|
| 17 |
+
hidden_features: Optional[int] = None,
|
| 18 |
+
out_features: Optional[int] = None,
|
| 19 |
+
act_layer: Callable[..., nn.Module] = None,
|
| 20 |
+
drop: float = 0.0,
|
| 21 |
+
bias: bool = True,
|
| 22 |
+
) -> None:
|
| 23 |
+
super().__init__()
|
| 24 |
+
out_features = out_features or in_features
|
| 25 |
+
hidden_features = hidden_features or in_features
|
| 26 |
+
self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
|
| 27 |
+
self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
|
| 28 |
+
|
| 29 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 30 |
+
x12 = self.w12(x)
|
| 31 |
+
x1, x2 = x12.chunk(2, dim=-1)
|
| 32 |
+
hidden = F.silu(x1) * x2
|
| 33 |
+
return self.w3(hidden)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
try:
|
| 37 |
+
from xformers.ops import SwiGLU
|
| 38 |
+
|
| 39 |
+
XFORMERS_AVAILABLE = True
|
| 40 |
+
except ImportError:
|
| 41 |
+
SwiGLU = SwiGLUFFN
|
| 42 |
+
XFORMERS_AVAILABLE = False
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class SwiGLUFFNFused(SwiGLU):
|
| 46 |
+
def __init__(
|
| 47 |
+
self,
|
| 48 |
+
in_features: int,
|
| 49 |
+
hidden_features: Optional[int] = None,
|
| 50 |
+
out_features: Optional[int] = None,
|
| 51 |
+
act_layer: Callable[..., nn.Module] = None,
|
| 52 |
+
drop: float = 0.0,
|
| 53 |
+
bias: bool = True,
|
| 54 |
+
) -> None:
|
| 55 |
+
out_features = out_features or in_features
|
| 56 |
+
hidden_features = hidden_features or in_features
|
| 57 |
+
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
|
| 58 |
+
super().__init__(
|
| 59 |
+
in_features=in_features,
|
| 60 |
+
hidden_features=hidden_features,
|
| 61 |
+
out_features=out_features,
|
| 62 |
+
bias=bias,
|
| 63 |
+
)
|
ppd/models/depth_anything_v2/dpt.py
ADDED
|
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torchvision.transforms import Compose
|
| 6 |
+
|
| 7 |
+
from .dinov2 import DINOv2
|
| 8 |
+
from .util.blocks import FeatureFusionBlock, _make_scratch
|
| 9 |
+
from .util.transform import Resize, NormalizeImage, PrepareForNet
|
| 10 |
+
import math
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def _make_fusion_block(features, use_bn, size=None):
|
| 14 |
+
return FeatureFusionBlock(
|
| 15 |
+
features,
|
| 16 |
+
nn.ReLU(False),
|
| 17 |
+
deconv=False,
|
| 18 |
+
bn=use_bn,
|
| 19 |
+
expand=False,
|
| 20 |
+
align_corners=True,
|
| 21 |
+
size=size,
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class ConvBlock(nn.Module):
|
| 26 |
+
def __init__(self, in_feature, out_feature):
|
| 27 |
+
super().__init__()
|
| 28 |
+
|
| 29 |
+
self.conv_block = nn.Sequential(
|
| 30 |
+
nn.Conv2d(in_feature, out_feature, kernel_size=3, stride=1, padding=1),
|
| 31 |
+
nn.BatchNorm2d(out_feature),
|
| 32 |
+
nn.ReLU(True)
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
def forward(self, x):
|
| 36 |
+
return self.conv_block(x)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class DPTHead(nn.Module):
|
| 40 |
+
def __init__(
|
| 41 |
+
self,
|
| 42 |
+
in_channels,
|
| 43 |
+
features=256,
|
| 44 |
+
use_bn=False,
|
| 45 |
+
out_channels=[256, 512, 1024, 1024],
|
| 46 |
+
use_clstoken=False
|
| 47 |
+
):
|
| 48 |
+
super(DPTHead, self).__init__()
|
| 49 |
+
|
| 50 |
+
self.use_clstoken = use_clstoken
|
| 51 |
+
|
| 52 |
+
self.projects = nn.ModuleList([
|
| 53 |
+
nn.Conv2d(
|
| 54 |
+
in_channels=in_channels,
|
| 55 |
+
out_channels=out_channel,
|
| 56 |
+
kernel_size=1,
|
| 57 |
+
stride=1,
|
| 58 |
+
padding=0,
|
| 59 |
+
) for out_channel in out_channels
|
| 60 |
+
])
|
| 61 |
+
|
| 62 |
+
self.resize_layers = nn.ModuleList([
|
| 63 |
+
nn.ConvTranspose2d(
|
| 64 |
+
in_channels=out_channels[0],
|
| 65 |
+
out_channels=out_channels[0],
|
| 66 |
+
kernel_size=4,
|
| 67 |
+
stride=4,
|
| 68 |
+
padding=0),
|
| 69 |
+
nn.ConvTranspose2d(
|
| 70 |
+
in_channels=out_channels[1],
|
| 71 |
+
out_channels=out_channels[1],
|
| 72 |
+
kernel_size=2,
|
| 73 |
+
stride=2,
|
| 74 |
+
padding=0),
|
| 75 |
+
nn.Identity(),
|
| 76 |
+
nn.Conv2d(
|
| 77 |
+
in_channels=out_channels[3],
|
| 78 |
+
out_channels=out_channels[3],
|
| 79 |
+
kernel_size=3,
|
| 80 |
+
stride=2,
|
| 81 |
+
padding=1)
|
| 82 |
+
])
|
| 83 |
+
|
| 84 |
+
if use_clstoken:
|
| 85 |
+
self.readout_projects = nn.ModuleList()
|
| 86 |
+
for _ in range(len(self.projects)):
|
| 87 |
+
self.readout_projects.append(
|
| 88 |
+
nn.Sequential(
|
| 89 |
+
nn.Linear(2 * in_channels, in_channels),
|
| 90 |
+
nn.GELU()))
|
| 91 |
+
|
| 92 |
+
self.scratch = _make_scratch(
|
| 93 |
+
out_channels,
|
| 94 |
+
features,
|
| 95 |
+
groups=1,
|
| 96 |
+
expand=False,
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
self.scratch.stem_transpose = None
|
| 100 |
+
|
| 101 |
+
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
| 102 |
+
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
| 103 |
+
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
| 104 |
+
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
| 105 |
+
|
| 106 |
+
head_features_1 = features
|
| 107 |
+
head_features_2 = 32
|
| 108 |
+
|
| 109 |
+
self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1)
|
| 110 |
+
self.scratch.output_conv2 = nn.Sequential(
|
| 111 |
+
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
|
| 112 |
+
nn.ReLU(True),
|
| 113 |
+
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
|
| 114 |
+
nn.ReLU(True),
|
| 115 |
+
nn.Identity(),
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
def forward(self, out_features, patch_h, patch_w):
|
| 119 |
+
out = []
|
| 120 |
+
for i, x in enumerate(out_features):
|
| 121 |
+
if self.use_clstoken:
|
| 122 |
+
x, cls_token = x[0], x[1]
|
| 123 |
+
readout = cls_token.unsqueeze(1).expand_as(x)
|
| 124 |
+
x = self.readout_projects[i](torch.cat((x, readout), -1))
|
| 125 |
+
else:
|
| 126 |
+
x = x[0]
|
| 127 |
+
|
| 128 |
+
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
|
| 129 |
+
x = self.projects[i](x)
|
| 130 |
+
x = self.resize_layers[i](x)
|
| 131 |
+
out.append(x)
|
| 132 |
+
|
| 133 |
+
layer_1, layer_2, layer_3, layer_4 = out
|
| 134 |
+
|
| 135 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
| 136 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
| 137 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
| 138 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
| 139 |
+
|
| 140 |
+
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
|
| 141 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
|
| 142 |
+
# path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
|
| 143 |
+
# path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
| 144 |
+
|
| 145 |
+
# out = self.scratch.output_conv1(path_1)
|
| 146 |
+
# out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
|
| 147 |
+
# out = self.scratch.output_conv2(out)
|
| 148 |
+
|
| 149 |
+
return path_3.flatten(2).transpose(1, 2)
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class DepthAnythingV2(nn.Module):
|
| 153 |
+
def __init__(
|
| 154 |
+
self,
|
| 155 |
+
encoder='vitl',
|
| 156 |
+
features=256,
|
| 157 |
+
out_channels=[256, 512, 1024, 1024],
|
| 158 |
+
use_bn=False,
|
| 159 |
+
use_clstoken=False
|
| 160 |
+
):
|
| 161 |
+
super(DepthAnythingV2, self).__init__()
|
| 162 |
+
|
| 163 |
+
# self.intermediate_layer_idx = {
|
| 164 |
+
# 'vits': [2, 5, 8, 11],
|
| 165 |
+
# 'vitb': [2, 5, 8, 11],
|
| 166 |
+
# 'vitl': [4, 11, 17, 23],
|
| 167 |
+
# 'vitg': [9, 19, 29, 39]
|
| 168 |
+
# }
|
| 169 |
+
|
| 170 |
+
# self.encoder = encoder
|
| 171 |
+
self.pretrained = DINOv2(model_name=encoder)
|
| 172 |
+
# self.depth_head = DPTHead(self.pretrained.embed_dim, features, use_bn, out_channels=out_channels, use_clstoken=use_clstoken)
|
| 173 |
+
|
| 174 |
+
def forward(self, x):
|
| 175 |
+
|
| 176 |
+
ori_h, ori_w = x.shape[-2:]
|
| 177 |
+
|
| 178 |
+
mean=[0.485, 0.456, 0.406]
|
| 179 |
+
std=[0.229, 0.224, 0.225]
|
| 180 |
+
mean = torch.tensor(mean).view(1, 3, 1, 1).to(x.device)
|
| 181 |
+
std = torch.tensor(std).view(1, 3, 1, 1).to(x.device)
|
| 182 |
+
x = (x - mean) / std
|
| 183 |
+
|
| 184 |
+
new_h = (ori_h // 16) * 14
|
| 185 |
+
new_w = (ori_w // 16) * 14
|
| 186 |
+
|
| 187 |
+
x = F.interpolate(x, size=(new_h, new_w), mode='bicubic', align_corners=False)
|
| 188 |
+
|
| 189 |
+
# patch_h, patch_w = x.shape[-2] // 14, x.shape[-1] // 14
|
| 190 |
+
# features = self.pretrained.get_intermediate_layers(x, self.intermediate_layer_idx[self.encoder], return_class_token=True)
|
| 191 |
+
semantics = self.pretrained.forward_features(x)["x_norm_patchtokens"]
|
| 192 |
+
|
| 193 |
+
return semantics
|
| 194 |
+
|
| 195 |
+
@torch.no_grad()
|
| 196 |
+
def infer_image(self, raw_image, input_size=518):
|
| 197 |
+
image, (h, w) = self.image2tensor(raw_image, input_size)
|
| 198 |
+
depth = self.forward(image)
|
| 199 |
+
|
| 200 |
+
depth = F.interpolate(depth[:, None], (h, w), mode="bilinear", align_corners=True)[0, 0]
|
| 201 |
+
|
| 202 |
+
return depth.cpu().numpy()
|
| 203 |
+
|
| 204 |
+
def image2tensor(self, raw_image, input_size=518):
|
| 205 |
+
transform = Compose([
|
| 206 |
+
Resize(
|
| 207 |
+
width=input_size,
|
| 208 |
+
height=input_size,
|
| 209 |
+
resize_target=False,
|
| 210 |
+
keep_aspect_ratio=True,
|
| 211 |
+
ensure_multiple_of=14,
|
| 212 |
+
resize_method='lower_bound',
|
| 213 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
| 214 |
+
),
|
| 215 |
+
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 216 |
+
PrepareForNet(),
|
| 217 |
+
])
|
| 218 |
+
h, w = raw_image.shape[:2]
|
| 219 |
+
image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB) / 255.0
|
| 220 |
+
|
| 221 |
+
image = transform({'image': image})['image']
|
| 222 |
+
image = torch.from_numpy(image).unsqueeze(0)
|
| 223 |
+
|
| 224 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
|
| 225 |
+
image = image.to(DEVICE)
|
| 226 |
+
|
| 227 |
+
return image, (h, w)
|
ppd/models/depth_anything_v2/util/blocks.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
| 5 |
+
scratch = nn.Module()
|
| 6 |
+
|
| 7 |
+
out_shape1 = out_shape
|
| 8 |
+
out_shape2 = out_shape
|
| 9 |
+
out_shape3 = out_shape
|
| 10 |
+
if len(in_shape) >= 4:
|
| 11 |
+
out_shape4 = out_shape
|
| 12 |
+
|
| 13 |
+
if expand:
|
| 14 |
+
out_shape1 = out_shape
|
| 15 |
+
out_shape2 = out_shape * 2
|
| 16 |
+
out_shape3 = out_shape * 4
|
| 17 |
+
if len(in_shape) >= 4:
|
| 18 |
+
out_shape4 = out_shape * 8
|
| 19 |
+
|
| 20 |
+
scratch.layer1_rn = nn.Conv2d(in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
|
| 21 |
+
scratch.layer2_rn = nn.Conv2d(in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
|
| 22 |
+
scratch.layer3_rn = nn.Conv2d(in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
|
| 23 |
+
if len(in_shape) >= 4:
|
| 24 |
+
scratch.layer4_rn = nn.Conv2d(in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
|
| 25 |
+
|
| 26 |
+
return scratch
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class ResidualConvUnit(nn.Module):
|
| 30 |
+
"""Residual convolution module.
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
def __init__(self, features, activation, bn):
|
| 34 |
+
"""Init.
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
features (int): number of features
|
| 38 |
+
"""
|
| 39 |
+
super().__init__()
|
| 40 |
+
|
| 41 |
+
self.bn = bn
|
| 42 |
+
|
| 43 |
+
self.groups=1
|
| 44 |
+
|
| 45 |
+
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
|
| 46 |
+
|
| 47 |
+
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
|
| 48 |
+
|
| 49 |
+
if self.bn == True:
|
| 50 |
+
self.bn1 = nn.BatchNorm2d(features)
|
| 51 |
+
self.bn2 = nn.BatchNorm2d(features)
|
| 52 |
+
|
| 53 |
+
self.activation = activation
|
| 54 |
+
|
| 55 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
| 56 |
+
|
| 57 |
+
def forward(self, x):
|
| 58 |
+
"""Forward pass.
|
| 59 |
+
|
| 60 |
+
Args:
|
| 61 |
+
x (tensor): input
|
| 62 |
+
|
| 63 |
+
Returns:
|
| 64 |
+
tensor: output
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
out = self.activation(x)
|
| 68 |
+
out = self.conv1(out)
|
| 69 |
+
if self.bn == True:
|
| 70 |
+
out = self.bn1(out)
|
| 71 |
+
|
| 72 |
+
out = self.activation(out)
|
| 73 |
+
out = self.conv2(out)
|
| 74 |
+
if self.bn == True:
|
| 75 |
+
out = self.bn2(out)
|
| 76 |
+
|
| 77 |
+
if self.groups > 1:
|
| 78 |
+
out = self.conv_merge(out)
|
| 79 |
+
|
| 80 |
+
return self.skip_add.add(out, x)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class FeatureFusionBlock(nn.Module):
|
| 84 |
+
"""Feature fusion block.
|
| 85 |
+
"""
|
| 86 |
+
|
| 87 |
+
def __init__(
|
| 88 |
+
self,
|
| 89 |
+
features,
|
| 90 |
+
activation,
|
| 91 |
+
deconv=False,
|
| 92 |
+
bn=False,
|
| 93 |
+
expand=False,
|
| 94 |
+
align_corners=True,
|
| 95 |
+
size=None
|
| 96 |
+
):
|
| 97 |
+
"""Init.
|
| 98 |
+
|
| 99 |
+
Args:
|
| 100 |
+
features (int): number of features
|
| 101 |
+
"""
|
| 102 |
+
super(FeatureFusionBlock, self).__init__()
|
| 103 |
+
|
| 104 |
+
self.deconv = deconv
|
| 105 |
+
self.align_corners = align_corners
|
| 106 |
+
|
| 107 |
+
self.groups=1
|
| 108 |
+
|
| 109 |
+
self.expand = expand
|
| 110 |
+
out_features = features
|
| 111 |
+
if self.expand == True:
|
| 112 |
+
out_features = features // 2
|
| 113 |
+
|
| 114 |
+
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
|
| 115 |
+
|
| 116 |
+
self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
|
| 117 |
+
self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
|
| 118 |
+
|
| 119 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
| 120 |
+
|
| 121 |
+
self.size=size
|
| 122 |
+
|
| 123 |
+
def forward(self, *xs, size=None):
|
| 124 |
+
"""Forward pass.
|
| 125 |
+
|
| 126 |
+
Returns:
|
| 127 |
+
tensor: output
|
| 128 |
+
"""
|
| 129 |
+
output = xs[0]
|
| 130 |
+
|
| 131 |
+
if len(xs) == 2:
|
| 132 |
+
res = self.resConfUnit1(xs[1])
|
| 133 |
+
output = self.skip_add.add(output, res)
|
| 134 |
+
|
| 135 |
+
output = self.resConfUnit2(output)
|
| 136 |
+
|
| 137 |
+
if (size is None) and (self.size is None):
|
| 138 |
+
modifier = {"scale_factor": 2}
|
| 139 |
+
elif size is None:
|
| 140 |
+
modifier = {"size": self.size}
|
| 141 |
+
else:
|
| 142 |
+
modifier = {"size": size}
|
| 143 |
+
|
| 144 |
+
output = nn.functional.interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners)
|
| 145 |
+
|
| 146 |
+
output = self.out_conv(output)
|
| 147 |
+
|
| 148 |
+
return output
|
ppd/models/depth_anything_v2/util/transform.py
ADDED
|
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cv2
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class Resize(object):
|
| 6 |
+
"""Resize sample to given size (width, height).
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
def __init__(
|
| 10 |
+
self,
|
| 11 |
+
width,
|
| 12 |
+
height,
|
| 13 |
+
resize_target=True,
|
| 14 |
+
keep_aspect_ratio=False,
|
| 15 |
+
ensure_multiple_of=1,
|
| 16 |
+
resize_method="lower_bound",
|
| 17 |
+
image_interpolation_method=cv2.INTER_AREA,
|
| 18 |
+
):
|
| 19 |
+
"""Init.
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
width (int): desired output width
|
| 23 |
+
height (int): desired output height
|
| 24 |
+
resize_target (bool, optional):
|
| 25 |
+
True: Resize the full sample (image, mask, target).
|
| 26 |
+
False: Resize image only.
|
| 27 |
+
Defaults to True.
|
| 28 |
+
keep_aspect_ratio (bool, optional):
|
| 29 |
+
True: Keep the aspect ratio of the input sample.
|
| 30 |
+
Output sample might not have the given width and height, and
|
| 31 |
+
resize behaviour depends on the parameter 'resize_method'.
|
| 32 |
+
Defaults to False.
|
| 33 |
+
ensure_multiple_of (int, optional):
|
| 34 |
+
Output width and height is constrained to be multiple of this parameter.
|
| 35 |
+
Defaults to 1.
|
| 36 |
+
resize_method (str, optional):
|
| 37 |
+
"lower_bound": Output will be at least as large as the given size.
|
| 38 |
+
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
| 39 |
+
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
| 40 |
+
Defaults to "lower_bound".
|
| 41 |
+
"""
|
| 42 |
+
self.__width = width
|
| 43 |
+
self.__height = height
|
| 44 |
+
|
| 45 |
+
self.__resize_target = resize_target
|
| 46 |
+
self.__keep_aspect_ratio = keep_aspect_ratio
|
| 47 |
+
self.__multiple_of = ensure_multiple_of
|
| 48 |
+
self.__resize_method = resize_method
|
| 49 |
+
self.__image_interpolation_method = image_interpolation_method
|
| 50 |
+
|
| 51 |
+
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
| 52 |
+
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
| 53 |
+
|
| 54 |
+
if max_val is not None and y > max_val:
|
| 55 |
+
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
| 56 |
+
|
| 57 |
+
if y < min_val:
|
| 58 |
+
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
| 59 |
+
|
| 60 |
+
return y
|
| 61 |
+
|
| 62 |
+
def get_size(self, width, height):
|
| 63 |
+
# determine new height and width
|
| 64 |
+
scale_height = self.__height / height
|
| 65 |
+
scale_width = self.__width / width
|
| 66 |
+
|
| 67 |
+
if self.__keep_aspect_ratio:
|
| 68 |
+
if self.__resize_method == "lower_bound":
|
| 69 |
+
# scale such that output size is lower bound
|
| 70 |
+
if scale_width > scale_height:
|
| 71 |
+
# fit width
|
| 72 |
+
scale_height = scale_width
|
| 73 |
+
else:
|
| 74 |
+
# fit height
|
| 75 |
+
scale_width = scale_height
|
| 76 |
+
elif self.__resize_method == "upper_bound":
|
| 77 |
+
# scale such that output size is upper bound
|
| 78 |
+
if scale_width < scale_height:
|
| 79 |
+
# fit width
|
| 80 |
+
scale_height = scale_width
|
| 81 |
+
else:
|
| 82 |
+
# fit height
|
| 83 |
+
scale_width = scale_height
|
| 84 |
+
elif self.__resize_method == "minimal":
|
| 85 |
+
# scale as least as possbile
|
| 86 |
+
if abs(1 - scale_width) < abs(1 - scale_height):
|
| 87 |
+
# fit width
|
| 88 |
+
scale_height = scale_width
|
| 89 |
+
else:
|
| 90 |
+
# fit height
|
| 91 |
+
scale_width = scale_height
|
| 92 |
+
else:
|
| 93 |
+
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
| 94 |
+
|
| 95 |
+
if self.__resize_method == "lower_bound":
|
| 96 |
+
new_height = self.constrain_to_multiple_of(scale_height * height, min_val=self.__height)
|
| 97 |
+
new_width = self.constrain_to_multiple_of(scale_width * width, min_val=self.__width)
|
| 98 |
+
elif self.__resize_method == "upper_bound":
|
| 99 |
+
new_height = self.constrain_to_multiple_of(scale_height * height, max_val=self.__height)
|
| 100 |
+
new_width = self.constrain_to_multiple_of(scale_width * width, max_val=self.__width)
|
| 101 |
+
elif self.__resize_method == "minimal":
|
| 102 |
+
new_height = self.constrain_to_multiple_of(scale_height * height)
|
| 103 |
+
new_width = self.constrain_to_multiple_of(scale_width * width)
|
| 104 |
+
else:
|
| 105 |
+
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
| 106 |
+
|
| 107 |
+
return (new_width, new_height)
|
| 108 |
+
|
| 109 |
+
def __call__(self, sample):
|
| 110 |
+
width, height = self.get_size(sample["image"].shape[1], sample["image"].shape[0])
|
| 111 |
+
|
| 112 |
+
# resize sample
|
| 113 |
+
sample["image"] = cv2.resize(sample["image"], (width, height), interpolation=self.__image_interpolation_method)
|
| 114 |
+
|
| 115 |
+
if self.__resize_target:
|
| 116 |
+
if "depth" in sample:
|
| 117 |
+
sample["depth"] = cv2.resize(sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST)
|
| 118 |
+
|
| 119 |
+
if "mask" in sample:
|
| 120 |
+
sample["mask"] = cv2.resize(sample["mask"].astype(np.float32), (width, height), interpolation=cv2.INTER_NEAREST)
|
| 121 |
+
|
| 122 |
+
return sample
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
class NormalizeImage(object):
|
| 126 |
+
"""Normlize image by given mean and std.
|
| 127 |
+
"""
|
| 128 |
+
|
| 129 |
+
def __init__(self, mean, std):
|
| 130 |
+
self.__mean = mean
|
| 131 |
+
self.__std = std
|
| 132 |
+
|
| 133 |
+
def __call__(self, sample):
|
| 134 |
+
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
| 135 |
+
|
| 136 |
+
return sample
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
class PrepareForNet(object):
|
| 140 |
+
"""Prepare sample for usage as network input.
|
| 141 |
+
"""
|
| 142 |
+
|
| 143 |
+
def __init__(self):
|
| 144 |
+
pass
|
| 145 |
+
|
| 146 |
+
def __call__(self, sample):
|
| 147 |
+
image = np.transpose(sample["image"], (2, 0, 1))
|
| 148 |
+
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
| 149 |
+
|
| 150 |
+
if "depth" in sample:
|
| 151 |
+
depth = sample["depth"].astype(np.float32)
|
| 152 |
+
sample["depth"] = np.ascontiguousarray(depth)
|
| 153 |
+
|
| 154 |
+
if "mask" in sample:
|
| 155 |
+
sample["mask"] = sample["mask"].astype(np.float32)
|
| 156 |
+
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
| 157 |
+
|
| 158 |
+
return sample
|
ppd/models/dit.py
ADDED
|
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
|
| 7 |
+
from .patch_embed import PatchEmbed
|
| 8 |
+
from .mlp import Mlp
|
| 9 |
+
from .attention import Attention
|
| 10 |
+
from .rope import RotaryPositionEmbedding2D, PositionGetter
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def modulate(x, shift, scale):
|
| 14 |
+
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class TimestepEmbedder(nn.Module):
|
| 18 |
+
"""
|
| 19 |
+
Embeds scalar timesteps into vector representations.
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.mlp = nn.Sequential(
|
| 25 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
| 26 |
+
nn.SiLU(),
|
| 27 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
| 28 |
+
)
|
| 29 |
+
self.frequency_embedding_size = frequency_embedding_size
|
| 30 |
+
|
| 31 |
+
@staticmethod
|
| 32 |
+
def timestep_embedding(t, dim, max_period=10000):
|
| 33 |
+
"""
|
| 34 |
+
Create sinusoidal timestep embeddings.
|
| 35 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
| 36 |
+
These may be fractional.
|
| 37 |
+
:param dim: the dimension of the output.
|
| 38 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
| 39 |
+
:return: an (N, D) Tensor of positional embeddings.
|
| 40 |
+
"""
|
| 41 |
+
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
| 42 |
+
half = dim // 2
|
| 43 |
+
freqs = torch.exp(
|
| 44 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
| 45 |
+
).to(device=t.device)
|
| 46 |
+
args = t[:, None].float() * freqs[None]
|
| 47 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 48 |
+
if dim % 2:
|
| 49 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 50 |
+
return embedding
|
| 51 |
+
|
| 52 |
+
def forward(self, t):
|
| 53 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
| 54 |
+
t_emb = self.mlp(t_freq)
|
| 55 |
+
return t_emb
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class DiTBlock(nn.Module):
|
| 59 |
+
"""
|
| 60 |
+
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
|
| 61 |
+
"""
|
| 62 |
+
|
| 63 |
+
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, rope=None, **block_kwargs):
|
| 64 |
+
super().__init__()
|
| 65 |
+
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
| 66 |
+
self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, qk_norm=True, rope=rope, **block_kwargs)
|
| 67 |
+
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
| 68 |
+
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
| 69 |
+
approx_gelu = nn.GELU(approximate="tanh")
|
| 70 |
+
self.mlp = Mlp(
|
| 71 |
+
in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0
|
| 72 |
+
)
|
| 73 |
+
self.adaLN_modulation = nn.Sequential(
|
| 74 |
+
nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True)
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
def forward(self, x, c, pos=None):
|
| 78 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(
|
| 79 |
+
c
|
| 80 |
+
).chunk(6, dim=1)
|
| 81 |
+
x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa), pos=pos)
|
| 82 |
+
x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
|
| 83 |
+
return x
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class FinalLayer(nn.Module):
|
| 87 |
+
"""
|
| 88 |
+
The final layer of DiT.
|
| 89 |
+
"""
|
| 90 |
+
|
| 91 |
+
def __init__(self, hidden_size, patch_size, out_channels):
|
| 92 |
+
super().__init__()
|
| 93 |
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
| 94 |
+
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
| 95 |
+
self.adaLN_modulation = nn.Sequential(
|
| 96 |
+
nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
def forward(self, x, c):
|
| 100 |
+
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
|
| 101 |
+
x = modulate(self.norm_final(x), shift, scale)
|
| 102 |
+
x = self.linear(x)
|
| 103 |
+
return x
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
class DiT(nn.Module):
|
| 107 |
+
"""
|
| 108 |
+
Cascade diffusion model with a transformer backbone.
|
| 109 |
+
"""
|
| 110 |
+
|
| 111 |
+
def __init__(
|
| 112 |
+
self,
|
| 113 |
+
in_channels=4,
|
| 114 |
+
out_channels=1,
|
| 115 |
+
hidden_size=1024,
|
| 116 |
+
depth=24,
|
| 117 |
+
num_heads=16,
|
| 118 |
+
mlp_ratio=4.0,
|
| 119 |
+
):
|
| 120 |
+
super().__init__()
|
| 121 |
+
self.in_channels = in_channels
|
| 122 |
+
self.out_channels = out_channels
|
| 123 |
+
self.num_heads = num_heads
|
| 124 |
+
|
| 125 |
+
rope_freq = 100
|
| 126 |
+
self.rope = RotaryPositionEmbedding2D(frequency=rope_freq) if rope_freq > 0 else None
|
| 127 |
+
self.position_getter = PositionGetter() if self.rope is not None else None
|
| 128 |
+
|
| 129 |
+
self.x_embedder = PatchEmbed(in_chans=in_channels, embed_dim=hidden_size)
|
| 130 |
+
self.t_embedder = TimestepEmbedder(hidden_size)
|
| 131 |
+
|
| 132 |
+
self.blocks = nn.ModuleList(
|
| 133 |
+
[DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, rope=self.rope) for _ in range(depth)]
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
self.proj_fusion = nn.Sequential(
|
| 137 |
+
nn.Linear(hidden_size*2, hidden_size*4),
|
| 138 |
+
nn.SiLU(),
|
| 139 |
+
nn.Linear(hidden_size*4, hidden_size*4),
|
| 140 |
+
nn.SiLU(),
|
| 141 |
+
nn.Linear(hidden_size*4, hidden_size*4),
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
self.final_layer = FinalLayer(hidden_size, 8, self.out_channels)
|
| 145 |
+
self.initialize_weights()
|
| 146 |
+
|
| 147 |
+
def initialize_weights(self):
|
| 148 |
+
# Initialize transformer layers:
|
| 149 |
+
def _basic_init(module):
|
| 150 |
+
if isinstance(module, nn.Linear):
|
| 151 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
| 152 |
+
if module.bias is not None:
|
| 153 |
+
nn.init.constant_(module.bias, 0)
|
| 154 |
+
|
| 155 |
+
self.apply(_basic_init)
|
| 156 |
+
|
| 157 |
+
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
|
| 158 |
+
w = self.x_embedder.proj.weight.data
|
| 159 |
+
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
| 160 |
+
nn.init.constant_(self.x_embedder.proj.bias, 0)
|
| 161 |
+
|
| 162 |
+
# Initialize timestep embedding MLP:
|
| 163 |
+
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
|
| 164 |
+
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
|
| 165 |
+
|
| 166 |
+
# Zero-out adaLN modulation layers in DiT blocks:
|
| 167 |
+
for block in self.blocks:
|
| 168 |
+
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
|
| 169 |
+
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
|
| 170 |
+
|
| 171 |
+
# Zero-out output layers:
|
| 172 |
+
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
|
| 173 |
+
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
|
| 174 |
+
nn.init.constant_(self.final_layer.linear.weight, 0)
|
| 175 |
+
nn.init.constant_(self.final_layer.linear.bias, 0)
|
| 176 |
+
|
| 177 |
+
def unpatchify(self, x, height, width):
|
| 178 |
+
"""
|
| 179 |
+
x: (N, T, patch_size**2 * C)
|
| 180 |
+
imgs: (N, H, W, C)
|
| 181 |
+
"""
|
| 182 |
+
c = self.out_channels
|
| 183 |
+
p = 8
|
| 184 |
+
h = height // p
|
| 185 |
+
w = width // p
|
| 186 |
+
assert h * w == x.shape[1]
|
| 187 |
+
|
| 188 |
+
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
|
| 189 |
+
x = torch.einsum("nhwpqc->nchpwq", x)
|
| 190 |
+
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
|
| 191 |
+
return imgs
|
| 192 |
+
|
| 193 |
+
def forward(self, x=None, semantics=None, timestep=None, dropout=0.1):
|
| 194 |
+
"""
|
| 195 |
+
Forward pass of SP-DiT.
|
| 196 |
+
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
|
| 197 |
+
t: (N,) tensor of diffusion timesteps
|
| 198 |
+
"""
|
| 199 |
+
|
| 200 |
+
N, C, H, W = x.shape
|
| 201 |
+
if len(timestep.shape) == 0:
|
| 202 |
+
timestep = timestep[None]
|
| 203 |
+
|
| 204 |
+
pos0 = None
|
| 205 |
+
pos1 = None
|
| 206 |
+
if self.rope is not None:
|
| 207 |
+
pos0 = self.position_getter(N, H // 16, W // 16, device=x.device)
|
| 208 |
+
pos1 = self.position_getter(N, H // 8, W // 8, device=x.device)
|
| 209 |
+
|
| 210 |
+
x = self.x_embedder(x)
|
| 211 |
+
N, T, D = x.shape
|
| 212 |
+
t = self.t_embedder(timestep) # (N, D)
|
| 213 |
+
|
| 214 |
+
# for block in self.blocks:
|
| 215 |
+
for i, block in enumerate(self.blocks):
|
| 216 |
+
if i < 12:
|
| 217 |
+
x = block(x, t, pos0) # (N, T, D)
|
| 218 |
+
else:
|
| 219 |
+
x = block(x, t, pos1) # (N, T, D)
|
| 220 |
+
|
| 221 |
+
if i == 11:
|
| 222 |
+
|
| 223 |
+
semantics = F.normalize(semantics, dim=-1)
|
| 224 |
+
x = self.proj_fusion(torch.cat([x, semantics], dim=-1))
|
| 225 |
+
p = 16
|
| 226 |
+
x = x.reshape(shape=(N, H//p, W//p, 2, 2, D))
|
| 227 |
+
x = torch.einsum("nhwpqc->nchpwq", x)
|
| 228 |
+
x = x.reshape(shape=(N, D, (H//p)*2, (W//p)*2))
|
| 229 |
+
x = x.flatten(2).transpose(1, 2)
|
| 230 |
+
|
| 231 |
+
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
|
| 232 |
+
x = self.unpatchify(x, height=H, width=W) # (N, out_channels, H, W)
|
| 233 |
+
return x
|
| 234 |
+
|
ppd/models/dit_wo_rope.py
ADDED
|
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from typing import NamedTuple
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from timm.models.vision_transformer import Attention, PatchEmbed
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from timm.layers import resample_abs_pos_embed
|
| 9 |
+
|
| 10 |
+
from .mlp import Mlp
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class DitOutput(NamedTuple):
|
| 14 |
+
sample: torch.Tensor
|
| 15 |
+
|
| 16 |
+
def build_mlp(hidden_size, projector_dim, z_dim):
|
| 17 |
+
return nn.Sequential(
|
| 18 |
+
nn.Linear(hidden_size, projector_dim),
|
| 19 |
+
nn.SiLU(),
|
| 20 |
+
nn.Linear(projector_dim, projector_dim),
|
| 21 |
+
nn.SiLU(),
|
| 22 |
+
nn.Linear(projector_dim, z_dim),
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def modulate(x, shift, scale):
|
| 27 |
+
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
#################################################################################
|
| 31 |
+
# Embedding Layers for Timesteps and Class Labels #
|
| 32 |
+
#################################################################################
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class TimestepEmbedder(nn.Module):
|
| 36 |
+
"""
|
| 37 |
+
Embeds scalar timesteps into vector representations.
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
| 41 |
+
super().__init__()
|
| 42 |
+
self.mlp = nn.Sequential(
|
| 43 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
| 44 |
+
nn.SiLU(),
|
| 45 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
| 46 |
+
)
|
| 47 |
+
self.frequency_embedding_size = frequency_embedding_size
|
| 48 |
+
|
| 49 |
+
@staticmethod
|
| 50 |
+
def timestep_embedding(t, dim, max_period=10000):
|
| 51 |
+
"""
|
| 52 |
+
Create sinusoidal timestep embeddings.
|
| 53 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
| 54 |
+
These may be fractional.
|
| 55 |
+
:param dim: the dimension of the output.
|
| 56 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
| 57 |
+
:return: an (N, D) Tensor of positional embeddings.
|
| 58 |
+
"""
|
| 59 |
+
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
| 60 |
+
half = dim // 2
|
| 61 |
+
freqs = torch.exp(
|
| 62 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
| 63 |
+
).to(device=t.device)
|
| 64 |
+
args = t[:, None].float() * freqs[None]
|
| 65 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 66 |
+
if dim % 2:
|
| 67 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 68 |
+
return embedding
|
| 69 |
+
|
| 70 |
+
def forward(self, t):
|
| 71 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
| 72 |
+
t_emb = self.mlp(t_freq)
|
| 73 |
+
return t_emb
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
# class LabelEmbedder(nn.Module):
|
| 77 |
+
# """
|
| 78 |
+
# Embeds class labels into vector representations. Also handles label dropout for cfg.
|
| 79 |
+
# """
|
| 80 |
+
|
| 81 |
+
# def __init__(self, num_classes, hidden_size, use_cfg_embedding):
|
| 82 |
+
# super().__init__()
|
| 83 |
+
# self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
|
| 84 |
+
# self.num_classes = num_classes
|
| 85 |
+
|
| 86 |
+
# def token_drop(self, labels, dropout_prob, force_drop_ids=None):
|
| 87 |
+
# """
|
| 88 |
+
# Drops labels to enable classifier-free guidance.
|
| 89 |
+
# """
|
| 90 |
+
# if force_drop_ids is None:
|
| 91 |
+
# drop_ids = torch.rand(labels.shape[0], device=labels.device) < dropout_prob
|
| 92 |
+
# else:
|
| 93 |
+
# drop_ids = force_drop_ids == 1
|
| 94 |
+
# labels = torch.where(drop_ids, self.num_classes, labels)
|
| 95 |
+
# return labels
|
| 96 |
+
|
| 97 |
+
# def forward(self, labels, dropout_prob=0.1, force_drop_ids=None):
|
| 98 |
+
# if dropout_prob > 0:
|
| 99 |
+
# labels = self.token_drop(labels, dropout_prob, force_drop_ids)
|
| 100 |
+
# embeddings = self.embedding_table(labels)
|
| 101 |
+
# return embeddings
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
#################################################################################
|
| 105 |
+
# Core DiT Model #
|
| 106 |
+
#################################################################################
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
class DiTBlock(nn.Module):
|
| 110 |
+
"""
|
| 111 |
+
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
|
| 112 |
+
"""
|
| 113 |
+
|
| 114 |
+
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs):
|
| 115 |
+
super().__init__()
|
| 116 |
+
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
| 117 |
+
self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, qk_norm=True, **block_kwargs)
|
| 118 |
+
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
| 119 |
+
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
| 120 |
+
approx_gelu = nn.GELU(approximate="tanh")
|
| 121 |
+
self.mlp = Mlp(
|
| 122 |
+
in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0
|
| 123 |
+
)
|
| 124 |
+
self.adaLN_modulation = nn.Sequential(
|
| 125 |
+
nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True)
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
def forward(self, x, c):
|
| 129 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(
|
| 130 |
+
c
|
| 131 |
+
).chunk(6, dim=1)
|
| 132 |
+
x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa))
|
| 133 |
+
x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
|
| 134 |
+
return x
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
class FinalLayer(nn.Module):
|
| 138 |
+
"""
|
| 139 |
+
The final layer of DiT.
|
| 140 |
+
"""
|
| 141 |
+
|
| 142 |
+
def __init__(self, hidden_size, patch_size, out_channels):
|
| 143 |
+
super().__init__()
|
| 144 |
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
| 145 |
+
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
| 146 |
+
self.adaLN_modulation = nn.Sequential(
|
| 147 |
+
nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
def forward(self, x, c):
|
| 151 |
+
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
|
| 152 |
+
x = modulate(self.norm_final(x), shift, scale)
|
| 153 |
+
x = self.linear(x)
|
| 154 |
+
return x
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
class DiT(nn.Module):
|
| 158 |
+
"""
|
| 159 |
+
Diffusion model with a Transformer backbone.
|
| 160 |
+
"""
|
| 161 |
+
|
| 162 |
+
def __init__(
|
| 163 |
+
self,
|
| 164 |
+
input_size=32,
|
| 165 |
+
patch_size=2,
|
| 166 |
+
in_channels=4,
|
| 167 |
+
out_channels=4,
|
| 168 |
+
hidden_size=1152,
|
| 169 |
+
depth=28,
|
| 170 |
+
num_heads=16,
|
| 171 |
+
mlp_ratio=4.0,
|
| 172 |
+
use_cfg_embedding=True,
|
| 173 |
+
num_classes=1000,
|
| 174 |
+
learn_sigma=True,
|
| 175 |
+
):
|
| 176 |
+
super().__init__()
|
| 177 |
+
self.learn_sigma = learn_sigma
|
| 178 |
+
self.in_channels = in_channels
|
| 179 |
+
self.out_channels = out_channels * 2 if learn_sigma else out_channels
|
| 180 |
+
self.patch_size = patch_size
|
| 181 |
+
self.num_heads = num_heads
|
| 182 |
+
self.input_size = input_size
|
| 183 |
+
|
| 184 |
+
self.x_embedder = PatchEmbed(input_size, patch_size*2, in_channels, hidden_size, bias=True)
|
| 185 |
+
self.t_embedder = TimestepEmbedder(hidden_size)
|
| 186 |
+
# self.y_embedder = LabelEmbedder(num_classes, hidden_size, use_cfg_embedding)
|
| 187 |
+
num_patches = self.x_embedder.num_patches
|
| 188 |
+
# Will use fixed sin-cos embedding:
|
| 189 |
+
num_patches = (512//16) ** 2
|
| 190 |
+
self.pos_embed = nn.Parameter(
|
| 191 |
+
torch.zeros(1, num_patches, hidden_size), requires_grad=False
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
self.blocks = nn.ModuleList(
|
| 195 |
+
[DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(depth)]
|
| 196 |
+
)
|
| 197 |
+
# self.projector = build_mlp(hidden_size, projector_dim=2048, z_dim=1024)
|
| 198 |
+
# self.mlp_fusion = nn.Sequential(
|
| 199 |
+
# nn.Linear(hidden_size*2, hidden_size),
|
| 200 |
+
# nn.SiLU(),
|
| 201 |
+
# nn.Linear(hidden_size, hidden_size),
|
| 202 |
+
# )
|
| 203 |
+
self.proj_fusion = nn.Sequential(
|
| 204 |
+
nn.Linear(hidden_size*2, hidden_size*4),
|
| 205 |
+
nn.SiLU(),
|
| 206 |
+
nn.Linear(hidden_size*4, hidden_size*4),
|
| 207 |
+
nn.SiLU(),
|
| 208 |
+
nn.Linear(hidden_size*4, hidden_size*4),
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
# self.proj_fusion_ = nn.Sequential(
|
| 212 |
+
# nn.Linear(hidden_size*2, hidden_size*4),
|
| 213 |
+
# nn.SiLU(),
|
| 214 |
+
# )
|
| 215 |
+
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels)
|
| 216 |
+
self.initialize_weights()
|
| 217 |
+
|
| 218 |
+
def initialize_weights(self):
|
| 219 |
+
# Initialize transformer layers:
|
| 220 |
+
def _basic_init(module):
|
| 221 |
+
if isinstance(module, nn.Linear):
|
| 222 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
| 223 |
+
if module.bias is not None:
|
| 224 |
+
nn.init.constant_(module.bias, 0)
|
| 225 |
+
|
| 226 |
+
self.apply(_basic_init)
|
| 227 |
+
|
| 228 |
+
# Initialize (and freeze) pos_embed by sin-cos embedding:
|
| 229 |
+
pos_embed = get_2d_sincos_pos_embed(
|
| 230 |
+
self.pos_embed.shape[-1],
|
| 231 |
+
(512//16, 512//16)
|
| 232 |
+
)
|
| 233 |
+
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
|
| 234 |
+
|
| 235 |
+
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
|
| 236 |
+
w = self.x_embedder.proj.weight.data
|
| 237 |
+
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
| 238 |
+
nn.init.constant_(self.x_embedder.proj.bias, 0)
|
| 239 |
+
|
| 240 |
+
# Initialize label embedding table:
|
| 241 |
+
# nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02)
|
| 242 |
+
|
| 243 |
+
# Initialize timestep embedding MLP:
|
| 244 |
+
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
|
| 245 |
+
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
|
| 246 |
+
|
| 247 |
+
# Zero-out adaLN modulation layers in DiT blocks:
|
| 248 |
+
for block in self.blocks:
|
| 249 |
+
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
|
| 250 |
+
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
|
| 251 |
+
|
| 252 |
+
# Zero-out output layers:
|
| 253 |
+
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
|
| 254 |
+
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
|
| 255 |
+
nn.init.constant_(self.final_layer.linear.weight, 0)
|
| 256 |
+
nn.init.constant_(self.final_layer.linear.bias, 0)
|
| 257 |
+
|
| 258 |
+
def unpatchify(self, x, height, width):
|
| 259 |
+
"""
|
| 260 |
+
x: (N, T, patch_size**2 * C)
|
| 261 |
+
imgs: (N, H, W, C)
|
| 262 |
+
"""
|
| 263 |
+
c = self.out_channels
|
| 264 |
+
p = self.x_embedder.patch_size[0] // 2
|
| 265 |
+
h = height // p
|
| 266 |
+
w = width // p
|
| 267 |
+
assert h * w == x.shape[1]
|
| 268 |
+
|
| 269 |
+
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
|
| 270 |
+
x = torch.einsum("nhwpqc->nchpwq", x)
|
| 271 |
+
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
|
| 272 |
+
return imgs
|
| 273 |
+
|
| 274 |
+
def forward(self, x=None, z_latent=None, timestep=None, label=None, dropout=0.1):
|
| 275 |
+
"""
|
| 276 |
+
Forward pass of DiT.
|
| 277 |
+
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
|
| 278 |
+
t: (N,) tensor of diffusion timesteps
|
| 279 |
+
y: (N,) tensor of class labels
|
| 280 |
+
"""
|
| 281 |
+
# if cfg_scale > 1.0:
|
| 282 |
+
# half = sample[: len(x) // 2]
|
| 283 |
+
# sample = torch.cat([half, half], dim=0)
|
| 284 |
+
N, C, H, W = x.shape
|
| 285 |
+
if len(timestep.shape) == 0:
|
| 286 |
+
timestep = timestep[None]
|
| 287 |
+
|
| 288 |
+
x = self.x_embedder(x) + self.pos_embed # (N, T, D), where T=H*W/patch_size ** 2
|
| 289 |
+
N, T, D = x.shape
|
| 290 |
+
timestep = self.t_embedder(timestep) # (N, D)
|
| 291 |
+
c = timestep # + label # (N, D)
|
| 292 |
+
|
| 293 |
+
# for block in self.blocks:
|
| 294 |
+
for i, block in enumerate(self.blocks):
|
| 295 |
+
x = block(x, c) # (N, T, D)
|
| 296 |
+
if (i+1) == 12:
|
| 297 |
+
|
| 298 |
+
z_latent = F.normalize(z_latent, dim=-1)
|
| 299 |
+
x = self.proj_fusion(torch.cat([x, z_latent], dim=-1))
|
| 300 |
+
p = self.x_embedder.patch_size[0]
|
| 301 |
+
x = x.reshape(shape=(N, H//p, W//p, 2, 2, D))
|
| 302 |
+
x = torch.einsum("nhwpqc->nchpwq", x)
|
| 303 |
+
x = x.reshape(shape=(N, D, (H//p)*2, (W//p)*2))
|
| 304 |
+
x = x.flatten(2).transpose(1, 2)
|
| 305 |
+
|
| 306 |
+
x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels)
|
| 307 |
+
x = self.unpatchify(x, height=H, width=W) # (N, out_channels, H, W)
|
| 308 |
+
|
| 309 |
+
return x
|
| 310 |
+
|
| 311 |
+
def get_pos_embed(pos_embed, H, W):
|
| 312 |
+
# 检查当前 pos_embed 的 shape
|
| 313 |
+
if pos_embed.shape[1] != (H // 16) * (W // 16):
|
| 314 |
+
return resample_abs_pos_embed(pos_embed, new_size=[H // 16, W // 16], num_prefix_tokens=0)
|
| 315 |
+
return pos_embed
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
#################################################################################
|
| 319 |
+
# Sine/Cosine Positional Embedding Functions #
|
| 320 |
+
#################################################################################
|
| 321 |
+
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
|
| 325 |
+
"""
|
| 326 |
+
grid_size: int of the grid height and width
|
| 327 |
+
return:
|
| 328 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim]
|
| 329 |
+
"""
|
| 330 |
+
|
| 331 |
+
if isinstance(grid_size, int):
|
| 332 |
+
h, w = grid_size, grid_size
|
| 333 |
+
else:
|
| 334 |
+
h, w = grid_size
|
| 335 |
+
grid_h = np.arange(h, dtype=np.float32)
|
| 336 |
+
grid_w = np.arange(w, dtype=np.float32)
|
| 337 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
| 338 |
+
grid = np.stack(grid, axis=0)
|
| 339 |
+
|
| 340 |
+
grid = grid.reshape([2, 1, h, w])
|
| 341 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
| 342 |
+
if cls_token and extra_tokens > 0:
|
| 343 |
+
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
|
| 344 |
+
return pos_embed
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
| 348 |
+
assert embed_dim % 2 == 0
|
| 349 |
+
|
| 350 |
+
# use half of dimensions to encode grid_h
|
| 351 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
| 352 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
| 353 |
+
|
| 354 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
| 355 |
+
return emb
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
| 359 |
+
"""
|
| 360 |
+
embed_dim: output dimension for each position
|
| 361 |
+
pos: a list of positions to be encoded: size (M,)
|
| 362 |
+
out: (M, D)
|
| 363 |
+
"""
|
| 364 |
+
assert embed_dim % 2 == 0
|
| 365 |
+
omega = np.arange(embed_dim // 2, dtype=np.float64)
|
| 366 |
+
omega /= embed_dim / 2.0
|
| 367 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
| 368 |
+
|
| 369 |
+
pos = pos.reshape(-1) # (M,)
|
| 370 |
+
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
| 371 |
+
|
| 372 |
+
emb_sin = np.sin(out) # (M, D/2)
|
| 373 |
+
emb_cos = np.cos(out) # (M, D/2)
|
| 374 |
+
|
| 375 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
| 376 |
+
return emb
|
ppd/models/mlp.py
ADDED
|
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" MLP module w/ dropout and configurable activation layer
|
| 2 |
+
|
| 3 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from functools import partial
|
| 7 |
+
from timm.layers.grn import GlobalResponseNorm
|
| 8 |
+
from timm.layers.helpers import to_2tuple
|
| 9 |
+
from torch import nn as nn
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class Mlp(nn.Module):
|
| 13 |
+
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
|
| 14 |
+
|
| 15 |
+
def __init__(
|
| 16 |
+
self,
|
| 17 |
+
in_features,
|
| 18 |
+
hidden_features=None,
|
| 19 |
+
out_features=None,
|
| 20 |
+
act_layer=nn.GELU,
|
| 21 |
+
norm_layer=None,
|
| 22 |
+
bias=True,
|
| 23 |
+
drop=0.0,
|
| 24 |
+
use_conv=False,
|
| 25 |
+
):
|
| 26 |
+
super().__init__()
|
| 27 |
+
out_features = out_features or in_features
|
| 28 |
+
hidden_features = hidden_features or in_features
|
| 29 |
+
bias = to_2tuple(bias)
|
| 30 |
+
drop_probs = to_2tuple(drop)
|
| 31 |
+
linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear
|
| 32 |
+
|
| 33 |
+
self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0])
|
| 34 |
+
self.act = act_layer
|
| 35 |
+
self.drop1 = nn.Dropout(drop_probs[0])
|
| 36 |
+
self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
|
| 37 |
+
self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1])
|
| 38 |
+
self.drop2 = nn.Dropout(drop_probs[1])
|
| 39 |
+
|
| 40 |
+
def forward(self, x):
|
| 41 |
+
x = self.fc1(x)
|
| 42 |
+
x = self.act(x)
|
| 43 |
+
x = self.drop1(x)
|
| 44 |
+
x = self.norm(x)
|
| 45 |
+
x = self.fc2(x)
|
| 46 |
+
x = self.drop2(x)
|
| 47 |
+
return x
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class GluMlp(nn.Module):
|
| 51 |
+
"""MLP w/ GLU style gating
|
| 52 |
+
See: https://arxiv.org/abs/1612.08083, https://arxiv.org/abs/2002.05202
|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
def __init__(
|
| 56 |
+
self,
|
| 57 |
+
in_features,
|
| 58 |
+
hidden_features=None,
|
| 59 |
+
out_features=None,
|
| 60 |
+
act_layer=nn.Sigmoid,
|
| 61 |
+
norm_layer=None,
|
| 62 |
+
bias=True,
|
| 63 |
+
drop=0.0,
|
| 64 |
+
use_conv=False,
|
| 65 |
+
gate_last=True,
|
| 66 |
+
):
|
| 67 |
+
super().__init__()
|
| 68 |
+
out_features = out_features or in_features
|
| 69 |
+
hidden_features = hidden_features or in_features
|
| 70 |
+
assert hidden_features % 2 == 0
|
| 71 |
+
bias = to_2tuple(bias)
|
| 72 |
+
drop_probs = to_2tuple(drop)
|
| 73 |
+
linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear
|
| 74 |
+
self.chunk_dim = 1 if use_conv else -1
|
| 75 |
+
self.gate_last = gate_last # use second half of width for gate
|
| 76 |
+
|
| 77 |
+
self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0])
|
| 78 |
+
self.act = act_layer()
|
| 79 |
+
self.drop1 = nn.Dropout(drop_probs[0])
|
| 80 |
+
self.norm = norm_layer(hidden_features // 2) if norm_layer is not None else nn.Identity()
|
| 81 |
+
self.fc2 = linear_layer(hidden_features // 2, out_features, bias=bias[1])
|
| 82 |
+
self.drop2 = nn.Dropout(drop_probs[1])
|
| 83 |
+
|
| 84 |
+
def init_weights(self):
|
| 85 |
+
# override init of fc1 w/ gate portion set to weight near zero, bias=1
|
| 86 |
+
fc1_mid = self.fc1.bias.shape[0] // 2
|
| 87 |
+
nn.init.ones_(self.fc1.bias[fc1_mid:])
|
| 88 |
+
nn.init.normal_(self.fc1.weight[fc1_mid:], std=1e-6)
|
| 89 |
+
|
| 90 |
+
def forward(self, x):
|
| 91 |
+
x = self.fc1(x)
|
| 92 |
+
x1, x2 = x.chunk(2, dim=self.chunk_dim)
|
| 93 |
+
x = x1 * self.act(x2) if self.gate_last else self.act(x1) * x2
|
| 94 |
+
x = self.drop1(x)
|
| 95 |
+
x = self.norm(x)
|
| 96 |
+
x = self.fc2(x)
|
| 97 |
+
x = self.drop2(x)
|
| 98 |
+
return x
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
SwiGLUPacked = partial(GluMlp, act_layer=nn.SiLU, gate_last=False)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class SwiGLU(nn.Module):
|
| 105 |
+
"""SwiGLU
|
| 106 |
+
NOTE: GluMLP above can implement SwiGLU, but this impl has split fc1 and
|
| 107 |
+
better matches some other common impl which makes mapping checkpoints simpler.
|
| 108 |
+
"""
|
| 109 |
+
|
| 110 |
+
def __init__(
|
| 111 |
+
self,
|
| 112 |
+
in_features,
|
| 113 |
+
hidden_features=None,
|
| 114 |
+
out_features=None,
|
| 115 |
+
act_layer=nn.SiLU,
|
| 116 |
+
norm_layer=None,
|
| 117 |
+
bias=True,
|
| 118 |
+
drop=0.0,
|
| 119 |
+
):
|
| 120 |
+
super().__init__()
|
| 121 |
+
out_features = out_features or in_features
|
| 122 |
+
hidden_features = hidden_features or in_features
|
| 123 |
+
bias = to_2tuple(bias)
|
| 124 |
+
drop_probs = to_2tuple(drop)
|
| 125 |
+
|
| 126 |
+
self.fc1_g = nn.Linear(in_features, hidden_features, bias=bias[0])
|
| 127 |
+
self.fc1_x = nn.Linear(in_features, hidden_features, bias=bias[0])
|
| 128 |
+
self.act = act_layer()
|
| 129 |
+
self.drop1 = nn.Dropout(drop_probs[0])
|
| 130 |
+
self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
|
| 131 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
|
| 132 |
+
self.drop2 = nn.Dropout(drop_probs[1])
|
| 133 |
+
|
| 134 |
+
def init_weights(self):
|
| 135 |
+
# override init of fc1 w/ gate portion set to weight near zero, bias=1
|
| 136 |
+
nn.init.ones_(self.fc1_g.bias)
|
| 137 |
+
nn.init.normal_(self.fc1_g.weight, std=1e-6)
|
| 138 |
+
|
| 139 |
+
def forward(self, x):
|
| 140 |
+
x_gate = self.fc1_g(x)
|
| 141 |
+
x = self.fc1_x(x)
|
| 142 |
+
x = self.act(x_gate) * x
|
| 143 |
+
x = self.drop1(x)
|
| 144 |
+
x = self.norm(x)
|
| 145 |
+
x = self.fc2(x)
|
| 146 |
+
x = self.drop2(x)
|
| 147 |
+
return x
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
class GatedMlp(nn.Module):
|
| 151 |
+
"""MLP as used in gMLP"""
|
| 152 |
+
|
| 153 |
+
def __init__(
|
| 154 |
+
self,
|
| 155 |
+
in_features,
|
| 156 |
+
hidden_features=None,
|
| 157 |
+
out_features=None,
|
| 158 |
+
act_layer=nn.GELU,
|
| 159 |
+
norm_layer=None,
|
| 160 |
+
gate_layer=None,
|
| 161 |
+
bias=True,
|
| 162 |
+
drop=0.0,
|
| 163 |
+
):
|
| 164 |
+
super().__init__()
|
| 165 |
+
out_features = out_features or in_features
|
| 166 |
+
hidden_features = hidden_features or in_features
|
| 167 |
+
bias = to_2tuple(bias)
|
| 168 |
+
drop_probs = to_2tuple(drop)
|
| 169 |
+
|
| 170 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
|
| 171 |
+
self.act = act_layer()
|
| 172 |
+
self.drop1 = nn.Dropout(drop_probs[0])
|
| 173 |
+
if gate_layer is not None:
|
| 174 |
+
assert hidden_features % 2 == 0
|
| 175 |
+
self.gate = gate_layer(hidden_features)
|
| 176 |
+
hidden_features = hidden_features // 2 # FIXME base reduction on gate property?
|
| 177 |
+
else:
|
| 178 |
+
self.gate = nn.Identity()
|
| 179 |
+
self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
|
| 180 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
|
| 181 |
+
self.drop2 = nn.Dropout(drop_probs[1])
|
| 182 |
+
|
| 183 |
+
def forward(self, x):
|
| 184 |
+
x = self.fc1(x)
|
| 185 |
+
x = self.act(x)
|
| 186 |
+
x = self.drop1(x)
|
| 187 |
+
x = self.gate(x)
|
| 188 |
+
x = self.norm(x)
|
| 189 |
+
x = self.fc2(x)
|
| 190 |
+
x = self.drop2(x)
|
| 191 |
+
return x
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
class ConvMlp(nn.Module):
|
| 195 |
+
"""MLP using 1x1 convs that keeps spatial dims"""
|
| 196 |
+
|
| 197 |
+
def __init__(
|
| 198 |
+
self,
|
| 199 |
+
in_features,
|
| 200 |
+
hidden_features=None,
|
| 201 |
+
out_features=None,
|
| 202 |
+
act_layer=nn.ReLU,
|
| 203 |
+
norm_layer=None,
|
| 204 |
+
bias=True,
|
| 205 |
+
drop=0.0,
|
| 206 |
+
):
|
| 207 |
+
super().__init__()
|
| 208 |
+
out_features = out_features or in_features
|
| 209 |
+
hidden_features = hidden_features or in_features
|
| 210 |
+
bias = to_2tuple(bias)
|
| 211 |
+
|
| 212 |
+
self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=bias[0])
|
| 213 |
+
self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity()
|
| 214 |
+
self.act = act_layer()
|
| 215 |
+
self.drop = nn.Dropout(drop)
|
| 216 |
+
self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=bias[1])
|
| 217 |
+
|
| 218 |
+
def forward(self, x):
|
| 219 |
+
x = self.fc1(x)
|
| 220 |
+
x = self.norm(x)
|
| 221 |
+
x = self.act(x)
|
| 222 |
+
x = self.drop(x)
|
| 223 |
+
x = self.fc2(x)
|
| 224 |
+
return x
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
class GlobalResponseNormMlp(nn.Module):
|
| 228 |
+
"""MLP w/ Global Response Norm (see grn.py), nn.Linear or 1x1 Conv2d"""
|
| 229 |
+
|
| 230 |
+
def __init__(
|
| 231 |
+
self,
|
| 232 |
+
in_features,
|
| 233 |
+
hidden_features=None,
|
| 234 |
+
out_features=None,
|
| 235 |
+
act_layer=nn.GELU,
|
| 236 |
+
bias=True,
|
| 237 |
+
drop=0.0,
|
| 238 |
+
use_conv=False,
|
| 239 |
+
):
|
| 240 |
+
super().__init__()
|
| 241 |
+
out_features = out_features or in_features
|
| 242 |
+
hidden_features = hidden_features or in_features
|
| 243 |
+
bias = to_2tuple(bias)
|
| 244 |
+
drop_probs = to_2tuple(drop)
|
| 245 |
+
linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear
|
| 246 |
+
|
| 247 |
+
self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0])
|
| 248 |
+
self.act = act_layer()
|
| 249 |
+
self.drop1 = nn.Dropout(drop_probs[0])
|
| 250 |
+
self.grn = GlobalResponseNorm(hidden_features, channels_last=not use_conv)
|
| 251 |
+
self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1])
|
| 252 |
+
self.drop2 = nn.Dropout(drop_probs[1])
|
| 253 |
+
|
| 254 |
+
def forward(self, x):
|
| 255 |
+
x = self.fc1(x)
|
| 256 |
+
x = self.act(x)
|
| 257 |
+
x = self.drop1(x)
|
| 258 |
+
x = self.grn(x)
|
| 259 |
+
x = self.fc2(x)
|
| 260 |
+
x = self.drop2(x)
|
| 261 |
+
return x
|
ppd/models/patch_embed.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This source code is licensed under the Apache License, Version 2.0
|
| 2 |
+
# found in the LICENSE file in the root directory of this source tree.
|
| 3 |
+
|
| 4 |
+
# References:
|
| 5 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
| 6 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
|
| 7 |
+
|
| 8 |
+
from typing import Callable, Optional, Tuple, Union
|
| 9 |
+
|
| 10 |
+
from torch import Tensor
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def make_2tuple(x):
|
| 15 |
+
if isinstance(x, tuple):
|
| 16 |
+
assert len(x) == 2
|
| 17 |
+
return x
|
| 18 |
+
|
| 19 |
+
assert isinstance(x, int)
|
| 20 |
+
return (x, x)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class PatchEmbed(nn.Module):
|
| 24 |
+
"""
|
| 25 |
+
2D image to patch embedding: (B,C,H,W) -> (B,N,D)
|
| 26 |
+
|
| 27 |
+
Args:
|
| 28 |
+
img_size: Image size.
|
| 29 |
+
patch_size: Patch token size.
|
| 30 |
+
in_chans: Number of input image channels.
|
| 31 |
+
embed_dim: Number of linear projection output channels.
|
| 32 |
+
norm_layer: Normalization layer.
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
def __init__(
|
| 36 |
+
self,
|
| 37 |
+
img_size: Union[int, Tuple[int, int]] = 224,
|
| 38 |
+
patch_size: Union[int, Tuple[int, int]] = 16,
|
| 39 |
+
in_chans: int = 3,
|
| 40 |
+
embed_dim: int = 768,
|
| 41 |
+
norm_layer: Optional[Callable] = None,
|
| 42 |
+
flatten_embedding: bool = True,
|
| 43 |
+
) -> None:
|
| 44 |
+
super().__init__()
|
| 45 |
+
|
| 46 |
+
image_HW = make_2tuple(img_size)
|
| 47 |
+
patch_HW = make_2tuple(patch_size)
|
| 48 |
+
patch_grid_size = (
|
| 49 |
+
image_HW[0] // patch_HW[0],
|
| 50 |
+
image_HW[1] // patch_HW[1],
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
self.img_size = image_HW
|
| 54 |
+
self.patch_size = patch_HW
|
| 55 |
+
self.patches_resolution = patch_grid_size
|
| 56 |
+
self.num_patches = patch_grid_size[0] * patch_grid_size[1]
|
| 57 |
+
|
| 58 |
+
self.in_chans = in_chans
|
| 59 |
+
self.embed_dim = embed_dim
|
| 60 |
+
|
| 61 |
+
self.flatten_embedding = flatten_embedding
|
| 62 |
+
|
| 63 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
|
| 64 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
| 65 |
+
|
| 66 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 67 |
+
_, _, H, W = x.shape
|
| 68 |
+
patch_H, patch_W = self.patch_size
|
| 69 |
+
|
| 70 |
+
assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
|
| 71 |
+
assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
|
| 72 |
+
|
| 73 |
+
x = self.proj(x) # B C H W
|
| 74 |
+
H, W = x.size(2), x.size(3)
|
| 75 |
+
x = x.flatten(2).transpose(1, 2) # B HW C
|
| 76 |
+
x = self.norm(x)
|
| 77 |
+
if not self.flatten_embedding:
|
| 78 |
+
x = x.reshape(-1, H, W, self.embed_dim) # B H W C
|
| 79 |
+
return x
|
| 80 |
+
|
| 81 |
+
def flops(self) -> float:
|
| 82 |
+
Ho, Wo = self.patches_resolution
|
| 83 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
| 84 |
+
if self.norm is not None:
|
| 85 |
+
flops += Ho * Wo * self.embed_dim
|
| 86 |
+
return flops
|
ppd/models/ppd.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
import numpy as np
|
| 3 |
+
import os
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
import cv2
|
| 8 |
+
import random
|
| 9 |
+
from ppd.utils.timesteps import Timesteps
|
| 10 |
+
from ppd.utils.schedule import LinearSchedule
|
| 11 |
+
from ppd.utils.sampler import EulerSampler
|
| 12 |
+
from ppd.utils.transform import image2tensor, resize_1024, resize_1024_crop, resize_keep_aspect
|
| 13 |
+
|
| 14 |
+
from ppd.models.depth_anything_v2.dpt import DepthAnythingV2
|
| 15 |
+
from ppd.models.dit import DiT
|
| 16 |
+
|
| 17 |
+
class PixelPerfectDepth(nn.Module):
|
| 18 |
+
def __init__(
|
| 19 |
+
self,
|
| 20 |
+
semantics_pth='checkpoints/depth_anything_v2_vitl.pth',
|
| 21 |
+
sampling_steps=10,
|
| 22 |
+
|
| 23 |
+
):
|
| 24 |
+
super(PixelPerfectDepth, self).__init__()
|
| 25 |
+
|
| 26 |
+
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
|
| 27 |
+
self.device = DEVICE
|
| 28 |
+
|
| 29 |
+
self.semantics_encoder = DepthAnythingV2(
|
| 30 |
+
encoder='vitl',
|
| 31 |
+
features=256,
|
| 32 |
+
out_channels=[256, 512, 1024, 1024]
|
| 33 |
+
)
|
| 34 |
+
self.semantics_encoder.load_state_dict(torch.load(semantics_pth, map_location='cpu'), strict=False)
|
| 35 |
+
self.semantics_encoder = self.semantics_encoder.to(self.device).eval()
|
| 36 |
+
self.dit = DiT()
|
| 37 |
+
|
| 38 |
+
self.sampling_steps = sampling_steps
|
| 39 |
+
|
| 40 |
+
self.schedule = LinearSchedule(T=1000)
|
| 41 |
+
self.sampling_timesteps = Timesteps(
|
| 42 |
+
T=self.schedule.T,
|
| 43 |
+
steps=self.sampling_steps,
|
| 44 |
+
device=self.device,
|
| 45 |
+
)
|
| 46 |
+
self.sampler = EulerSampler(
|
| 47 |
+
schedule=self.schedule,
|
| 48 |
+
timesteps=self.sampling_timesteps,
|
| 49 |
+
prediction_type='velocity'
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
@torch.no_grad()
|
| 53 |
+
def infer_image(self, image, sampling_steps=None, use_fp16: bool = True):
|
| 54 |
+
h, w = image.shape[:2]
|
| 55 |
+
resize_image = resize_keep_aspect(image)
|
| 56 |
+
image = image2tensor(resize_image)
|
| 57 |
+
image = image.to(self.device)
|
| 58 |
+
|
| 59 |
+
if sampling_steps is not None and sampling_steps != self.sampling_steps:
|
| 60 |
+
self.sampling_steps = sampling_steps
|
| 61 |
+
self.sampling_timesteps = Timesteps(
|
| 62 |
+
T=self.schedule.T,
|
| 63 |
+
steps=self.sampling_steps,
|
| 64 |
+
device=self.device,
|
| 65 |
+
)
|
| 66 |
+
self.sampler = EulerSampler(
|
| 67 |
+
schedule=self.schedule,
|
| 68 |
+
timesteps=self.sampling_timesteps,
|
| 69 |
+
prediction_type='velocity'
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
with torch.autocast(device_type=self.device.type, dtype=torch.float16, enabled=True):
|
| 73 |
+
depth = self.forward_test(image)
|
| 74 |
+
# depth = F.interpolate(depth, size=(h, w), mode='bilinear', align_corners=False)[0, 0]
|
| 75 |
+
|
| 76 |
+
return depth, resize_image
|
| 77 |
+
|
| 78 |
+
@torch.no_grad()
|
| 79 |
+
def forward_test(self, image):
|
| 80 |
+
|
| 81 |
+
semantics = self.semantics_prompt(image)
|
| 82 |
+
cond = image - 0.5
|
| 83 |
+
latent = torch.randn(size=[cond.shape[0], 1, cond.shape[2], cond.shape[3]]).to(self.device)
|
| 84 |
+
|
| 85 |
+
for timestep in self.sampling_timesteps:
|
| 86 |
+
input = torch.cat([latent, cond], dim=1)
|
| 87 |
+
pred = self.dit(x=input, semantics=semantics, timestep=timestep)
|
| 88 |
+
latent = self.sampler.step(pred=pred, x_t=latent, t=timestep)
|
| 89 |
+
|
| 90 |
+
return latent + 0.5
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
@torch.no_grad()
|
| 94 |
+
def semantics_prompt(self, image):
|
| 95 |
+
with torch.no_grad():
|
| 96 |
+
semantics = self.semantics_encoder(image)
|
| 97 |
+
return semantics
|
ppd/models/rope.py
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This source code is licensed under the Apache License, Version 2.0
|
| 2 |
+
# found in the LICENSE file in the root directory of this source tree.
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
# Implementation of 2D Rotary Position Embeddings (RoPE).
|
| 6 |
+
|
| 7 |
+
# This module provides a clean implementation of 2D Rotary Position Embeddings,
|
| 8 |
+
# which extends the original RoPE concept to handle 2D spatial positions.
|
| 9 |
+
|
| 10 |
+
# Inspired by:
|
| 11 |
+
# https://github.com/meta-llama/codellama/blob/main/llama/model.py
|
| 12 |
+
# https://github.com/naver-ai/rope-vit
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
import numpy as np
|
| 16 |
+
import torch
|
| 17 |
+
import torch.nn as nn
|
| 18 |
+
import torch.nn.functional as F
|
| 19 |
+
from typing import Dict, Tuple
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class PositionGetter:
|
| 23 |
+
"""Generates and caches 2D spatial positions for patches in a grid.
|
| 24 |
+
|
| 25 |
+
This class efficiently manages the generation of spatial coordinates for patches
|
| 26 |
+
in a 2D grid, caching results to avoid redundant computations.
|
| 27 |
+
|
| 28 |
+
Attributes:
|
| 29 |
+
position_cache: Dictionary storing precomputed position tensors for different
|
| 30 |
+
grid dimensions.
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
def __init__(self):
|
| 34 |
+
"""Initializes the position generator with an empty cache."""
|
| 35 |
+
self.position_cache: Dict[Tuple[int, int], torch.Tensor] = {}
|
| 36 |
+
|
| 37 |
+
def __call__(self, batch_size: int, height: int, width: int, device: torch.device) -> torch.Tensor:
|
| 38 |
+
"""Generates spatial positions for a batch of patches.
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
batch_size: Number of samples in the batch.
|
| 42 |
+
height: Height of the grid in patches.
|
| 43 |
+
width: Width of the grid in patches.
|
| 44 |
+
device: Target device for the position tensor.
|
| 45 |
+
|
| 46 |
+
Returns:
|
| 47 |
+
Tensor of shape (batch_size, height*width, 2) containing y,x coordinates
|
| 48 |
+
for each position in the grid, repeated for each batch item.
|
| 49 |
+
"""
|
| 50 |
+
if (height, width) not in self.position_cache:
|
| 51 |
+
y_coords = torch.arange(height, device=device)
|
| 52 |
+
x_coords = torch.arange(width, device=device)
|
| 53 |
+
positions = torch.cartesian_prod(y_coords, x_coords)
|
| 54 |
+
self.position_cache[height, width] = positions
|
| 55 |
+
|
| 56 |
+
cached_positions = self.position_cache[height, width]
|
| 57 |
+
return cached_positions.view(1, height * width, 2).expand(batch_size, -1, -1).clone()
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class RotaryPositionEmbedding2D(nn.Module):
|
| 61 |
+
"""2D Rotary Position Embedding implementation.
|
| 62 |
+
|
| 63 |
+
This module applies rotary position embeddings to input tokens based on their
|
| 64 |
+
2D spatial positions. It handles the position-dependent rotation of features
|
| 65 |
+
separately for vertical and horizontal dimensions.
|
| 66 |
+
|
| 67 |
+
Args:
|
| 68 |
+
frequency: Base frequency for the position embeddings. Default: 100.0
|
| 69 |
+
scaling_factor: Scaling factor for frequency computation. Default: 1.0
|
| 70 |
+
|
| 71 |
+
Attributes:
|
| 72 |
+
base_frequency: Base frequency for computing position embeddings.
|
| 73 |
+
scaling_factor: Factor to scale the computed frequencies.
|
| 74 |
+
frequency_cache: Cache for storing precomputed frequency components.
|
| 75 |
+
"""
|
| 76 |
+
|
| 77 |
+
def __init__(self, frequency: float = 100.0, scaling_factor: float = 1.0):
|
| 78 |
+
"""Initializes the 2D RoPE module."""
|
| 79 |
+
super().__init__()
|
| 80 |
+
self.base_frequency = frequency
|
| 81 |
+
self.scaling_factor = scaling_factor
|
| 82 |
+
self.frequency_cache: Dict[Tuple, Tuple[torch.Tensor, torch.Tensor]] = {}
|
| 83 |
+
|
| 84 |
+
def _compute_frequency_components(
|
| 85 |
+
self, dim: int, seq_len: int, device: torch.device, dtype: torch.dtype
|
| 86 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 87 |
+
"""Computes frequency components for rotary embeddings.
|
| 88 |
+
|
| 89 |
+
Args:
|
| 90 |
+
dim: Feature dimension (must be even).
|
| 91 |
+
seq_len: Maximum sequence length.
|
| 92 |
+
device: Target device for computations.
|
| 93 |
+
dtype: Data type for the computed tensors.
|
| 94 |
+
|
| 95 |
+
Returns:
|
| 96 |
+
Tuple of (cosine, sine) tensors for frequency components.
|
| 97 |
+
"""
|
| 98 |
+
cache_key = (dim, seq_len, device, dtype)
|
| 99 |
+
if cache_key not in self.frequency_cache:
|
| 100 |
+
# Compute frequency bands
|
| 101 |
+
exponents = torch.arange(0, dim, 2, device=device).float() / dim
|
| 102 |
+
inv_freq = 1.0 / (self.base_frequency**exponents)
|
| 103 |
+
|
| 104 |
+
# Generate position-dependent frequencies
|
| 105 |
+
positions = torch.arange(seq_len, device=device, dtype=inv_freq.dtype)
|
| 106 |
+
angles = torch.einsum("i,j->ij", positions, inv_freq)
|
| 107 |
+
|
| 108 |
+
# Compute and cache frequency components
|
| 109 |
+
angles = angles.to(dtype)
|
| 110 |
+
angles = torch.cat((angles, angles), dim=-1)
|
| 111 |
+
cos_components = angles.cos().to(dtype)
|
| 112 |
+
sin_components = angles.sin().to(dtype)
|
| 113 |
+
self.frequency_cache[cache_key] = (cos_components, sin_components)
|
| 114 |
+
|
| 115 |
+
return self.frequency_cache[cache_key]
|
| 116 |
+
|
| 117 |
+
@staticmethod
|
| 118 |
+
def _rotate_features(x: torch.Tensor) -> torch.Tensor:
|
| 119 |
+
"""Performs feature rotation by splitting and recombining feature dimensions.
|
| 120 |
+
|
| 121 |
+
Args:
|
| 122 |
+
x: Input tensor to rotate.
|
| 123 |
+
|
| 124 |
+
Returns:
|
| 125 |
+
Rotated feature tensor.
|
| 126 |
+
"""
|
| 127 |
+
feature_dim = x.shape[-1]
|
| 128 |
+
x1, x2 = x[..., : feature_dim // 2], x[..., feature_dim // 2 :]
|
| 129 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 130 |
+
|
| 131 |
+
def _apply_1d_rope(
|
| 132 |
+
self, tokens: torch.Tensor, positions: torch.Tensor, cos_comp: torch.Tensor, sin_comp: torch.Tensor
|
| 133 |
+
) -> torch.Tensor:
|
| 134 |
+
"""Applies 1D rotary position embeddings along one dimension.
|
| 135 |
+
|
| 136 |
+
Args:
|
| 137 |
+
tokens: Input token features.
|
| 138 |
+
positions: Position indices.
|
| 139 |
+
cos_comp: Cosine components for rotation.
|
| 140 |
+
sin_comp: Sine components for rotation.
|
| 141 |
+
|
| 142 |
+
Returns:
|
| 143 |
+
Tokens with applied rotary position embeddings.
|
| 144 |
+
"""
|
| 145 |
+
# Embed positions with frequency components
|
| 146 |
+
cos = F.embedding(positions, cos_comp)[:, None, :, :]
|
| 147 |
+
sin = F.embedding(positions, sin_comp)[:, None, :, :]
|
| 148 |
+
|
| 149 |
+
# Apply rotation
|
| 150 |
+
return (tokens * cos) + (self._rotate_features(tokens) * sin)
|
| 151 |
+
|
| 152 |
+
def forward(self, tokens: torch.Tensor, positions: torch.Tensor) -> torch.Tensor:
|
| 153 |
+
"""Applies 2D rotary position embeddings to input tokens.
|
| 154 |
+
|
| 155 |
+
Args:
|
| 156 |
+
tokens: Input tensor of shape (batch_size, n_heads, n_tokens, dim).
|
| 157 |
+
The feature dimension (dim) must be divisible by 4.
|
| 158 |
+
positions: Position tensor of shape (batch_size, n_tokens, 2) containing
|
| 159 |
+
the y and x coordinates for each token.
|
| 160 |
+
|
| 161 |
+
Returns:
|
| 162 |
+
Tensor of same shape as input with applied 2D rotary position embeddings.
|
| 163 |
+
|
| 164 |
+
Raises:
|
| 165 |
+
AssertionError: If input dimensions are invalid or positions are malformed.
|
| 166 |
+
"""
|
| 167 |
+
# Validate inputs
|
| 168 |
+
assert tokens.size(-1) % 2 == 0, "Feature dimension must be even"
|
| 169 |
+
assert positions.ndim == 3 and positions.shape[-1] == 2, "Positions must have shape (batch_size, n_tokens, 2)"
|
| 170 |
+
|
| 171 |
+
# Compute feature dimension for each spatial direction
|
| 172 |
+
feature_dim = tokens.size(-1) // 2
|
| 173 |
+
|
| 174 |
+
# Get frequency components
|
| 175 |
+
max_position = int(positions.max()) + 1
|
| 176 |
+
cos_comp, sin_comp = self._compute_frequency_components(feature_dim, max_position, tokens.device, tokens.dtype)
|
| 177 |
+
|
| 178 |
+
# Split features for vertical and horizontal processing
|
| 179 |
+
vertical_features, horizontal_features = tokens.chunk(2, dim=-1)
|
| 180 |
+
|
| 181 |
+
# Apply RoPE separately for each dimension
|
| 182 |
+
vertical_features = self._apply_1d_rope(vertical_features, positions[..., 0], cos_comp, sin_comp)
|
| 183 |
+
horizontal_features = self._apply_1d_rope(horizontal_features, positions[..., 1], cos_comp, sin_comp)
|
| 184 |
+
|
| 185 |
+
# Combine processed features
|
| 186 |
+
return torch.cat((vertical_features, horizontal_features), dim=-1)
|
ppd/utils/align_depth_func.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import cv2
|
| 4 |
+
from sklearn.linear_model import RANSACRegressor
|
| 5 |
+
from sklearn.preprocessing import PolynomialFeatures
|
| 6 |
+
from sklearn.pipeline import make_pipeline
|
| 7 |
+
|
| 8 |
+
degree = 1
|
| 9 |
+
poly_features = PolynomialFeatures(degree=degree, include_bias=False)
|
| 10 |
+
ransac = RANSACRegressor(max_trials=1000)
|
| 11 |
+
model = make_pipeline(poly_features, ransac)
|
| 12 |
+
|
| 13 |
+
def recover_metric_depth_ransac(pred, gt, mask):
|
| 14 |
+
pred = pred.astype(np.float32)
|
| 15 |
+
gt = gt.astype(np.float32)
|
| 16 |
+
|
| 17 |
+
mask_gt = gt[mask].astype(np.float32)
|
| 18 |
+
mask_pred = pred[mask].astype(np.float32)
|
| 19 |
+
|
| 20 |
+
## depth -> log depth
|
| 21 |
+
mask_gt = np.log(mask_gt + 1.)
|
| 22 |
+
|
| 23 |
+
try:
|
| 24 |
+
model.fit(mask_pred[:, None], mask_gt[:, None])
|
| 25 |
+
a, b = model.named_steps['ransacregressor'].estimator_.coef_, model.named_steps['ransacregressor'].estimator_.intercept_
|
| 26 |
+
a = a.item()
|
| 27 |
+
b = b.item()
|
| 28 |
+
except:
|
| 29 |
+
a, b = 1, 0
|
| 30 |
+
|
| 31 |
+
if a > 0:
|
| 32 |
+
pred_metric = a * pred + b
|
| 33 |
+
else:
|
| 34 |
+
pred_mean = np.mean(mask_pred)
|
| 35 |
+
gt_mean = np.mean(mask_gt)
|
| 36 |
+
pred_metric = pred * (gt_mean / pred_mean)
|
| 37 |
+
|
| 38 |
+
## log depth -> depth
|
| 39 |
+
pred_metric = np.exp(pred_metric) - 1.
|
| 40 |
+
return pred_metric
|
ppd/utils/depth2pcd.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import open3d as o3d
|
| 3 |
+
|
| 4 |
+
def depth2pcd(depth, intrinsic, color=None, input_mask=None, ret_pcd=False):
|
| 5 |
+
"""
|
| 6 |
+
Convert a depth map into a 3D point cloud.
|
| 7 |
+
|
| 8 |
+
Args:
|
| 9 |
+
depth (np.ndarray): (H, W) depth map in meters.
|
| 10 |
+
intrinsic (np.ndarray): (3, 3) camera intrinsic matrix.
|
| 11 |
+
color (np.ndarray, optional): (H, W, 3) RGB image aligned with the depth map.
|
| 12 |
+
input_mask (np.ndarray, optional): (H, W) boolean mask indicating valid pixels.
|
| 13 |
+
ret_pcd (bool, optional): If True, returns an Open3D PointCloud object;
|
| 14 |
+
otherwise returns NumPy arrays.
|
| 15 |
+
|
| 16 |
+
Returns:
|
| 17 |
+
- If ret_pcd=True: returns `o3d.geometry.PointCloud()`
|
| 18 |
+
- Otherwise: returns (N, 3) point coordinates and (N, 3) color arrays.
|
| 19 |
+
"""
|
| 20 |
+
H, W = depth.shape
|
| 21 |
+
x, y = np.meshgrid(np.arange(W), np.arange(H))
|
| 22 |
+
xx, yy = x.reshape(-1), y.reshape(-1)
|
| 23 |
+
zz = depth.reshape(-1)
|
| 24 |
+
|
| 25 |
+
# Create a valid pixel mask
|
| 26 |
+
mask = np.ones_like(zz, dtype=bool)
|
| 27 |
+
if input_mask is not None:
|
| 28 |
+
mask &= input_mask.reshape(-1)
|
| 29 |
+
|
| 30 |
+
# Form homogeneous pixel coordinates
|
| 31 |
+
pixels = np.stack([xx, yy, np.ones_like(xx)], axis=1)
|
| 32 |
+
|
| 33 |
+
# Back-project pixels into 3D camera coordinates
|
| 34 |
+
points = pixels * zz[:, None]
|
| 35 |
+
points = np.dot(points, np.linalg.inv(intrinsic).T)
|
| 36 |
+
|
| 37 |
+
# Keep only valid points
|
| 38 |
+
points = points[mask]
|
| 39 |
+
|
| 40 |
+
# Process color information
|
| 41 |
+
if color is not None:
|
| 42 |
+
color = color.astype(np.float32) / 255.0
|
| 43 |
+
colors = color.reshape(-1, 3)[mask]
|
| 44 |
+
else:
|
| 45 |
+
colors = None
|
| 46 |
+
|
| 47 |
+
# Return Open3D point cloud or NumPy arrays
|
| 48 |
+
if ret_pcd:
|
| 49 |
+
pcd = o3d.geometry.PointCloud()
|
| 50 |
+
pcd.points = o3d.utility.Vector3dVector(points)
|
| 51 |
+
if colors is not None:
|
| 52 |
+
pcd.colors = o3d.utility.Vector3dVector(colors)
|
| 53 |
+
return pcd
|
| 54 |
+
else:
|
| 55 |
+
return points, colors
|
ppd/utils/sampler.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from enum import Enum
|
| 3 |
+
from ppd.utils.timesteps import Timesteps
|
| 4 |
+
from ppd.utils.schedule import LinearSchedule
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class EulerSampler:
|
| 8 |
+
"""
|
| 9 |
+
The Euler method is the simplest ODE solver.
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
schedule: LinearSchedule,
|
| 15 |
+
timesteps: Timesteps,
|
| 16 |
+
prediction_type: 'velocity',
|
| 17 |
+
):
|
| 18 |
+
self.schedule = schedule
|
| 19 |
+
self.timesteps = timesteps
|
| 20 |
+
self.prediction_type = prediction_type
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def step(
|
| 24 |
+
self,
|
| 25 |
+
pred: torch.Tensor,
|
| 26 |
+
x_t: torch.Tensor,
|
| 27 |
+
t: torch.Tensor,
|
| 28 |
+
**kwargs,
|
| 29 |
+
) -> torch.Tensor:
|
| 30 |
+
"""
|
| 31 |
+
Step to the next timestep.
|
| 32 |
+
"""
|
| 33 |
+
return self.step_to(pred, x_t, t, self.get_next_timestep(t), **kwargs)
|
| 34 |
+
|
| 35 |
+
def step_to(
|
| 36 |
+
self,
|
| 37 |
+
pred: torch.Tensor,
|
| 38 |
+
x_t: torch.Tensor,
|
| 39 |
+
t: torch.Tensor,
|
| 40 |
+
s: torch.Tensor,
|
| 41 |
+
**kwargs,
|
| 42 |
+
) -> torch.Tensor:
|
| 43 |
+
"""
|
| 44 |
+
Steps from x_t at timestep t to x_s at timestep s. Returns x_s.
|
| 45 |
+
"""
|
| 46 |
+
t = t[(...,) + (None,) * (x_t.ndim - t.ndim)] if t.ndim < x_t.ndim else t
|
| 47 |
+
s = s[(...,) + (None,) * (x_t.ndim - s.ndim)] if s.ndim < x_t.ndim else s
|
| 48 |
+
T = self.schedule.T
|
| 49 |
+
# Step from x_t to x_s.
|
| 50 |
+
pred_x_0, pred_x_T = self.schedule.convert_from_pred(pred, self.prediction_type, x_t, t)
|
| 51 |
+
pred_x_s = self.schedule.forward(pred_x_0, pred_x_T, s.clamp(0, T))
|
| 52 |
+
# Clamp x_s to x_0 and x_T if s is out of bound.
|
| 53 |
+
pred_x_s = pred_x_s.where(s >= 0, pred_x_0)
|
| 54 |
+
pred_x_s = pred_x_s.where(s <= T, pred_x_T)
|
| 55 |
+
return pred_x_s
|
| 56 |
+
|
| 57 |
+
def get_next_timestep(
|
| 58 |
+
self,
|
| 59 |
+
t: torch.Tensor,
|
| 60 |
+
) -> torch.Tensor:
|
| 61 |
+
"""
|
| 62 |
+
Get the next sample timestep.
|
| 63 |
+
Support multiple different timesteps t in a batch.
|
| 64 |
+
If no more steps, return out of bound value -1 or T+1.
|
| 65 |
+
"""
|
| 66 |
+
T = self.timesteps.T
|
| 67 |
+
steps = len(self.timesteps)
|
| 68 |
+
curr_idx = self.timesteps.index(t)
|
| 69 |
+
next_idx = curr_idx + 1
|
| 70 |
+
|
| 71 |
+
s = self.timesteps[next_idx.clamp_max(steps - 1)]
|
| 72 |
+
s = s.where(next_idx < steps, -1)
|
| 73 |
+
return s
|
ppd/utils/schedule.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Linear interpolation schedule (lerp).
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from typing import Tuple, Union
|
| 6 |
+
import torch
|
| 7 |
+
from enum import Enum
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class LinearSchedule:
|
| 11 |
+
"""
|
| 12 |
+
Linear interpolation schedule (lerp) is proposed by flow matching and rectified flow.
|
| 13 |
+
It leads to straighter probability flow theoretically. It is also used by Stable Diffusion 3.
|
| 14 |
+
|
| 15 |
+
x_t = (1 - t) * x_0 + t * x_T
|
| 16 |
+
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
def __init__(self, T: Union[int, float] = 1.0):
|
| 20 |
+
self.T = T
|
| 21 |
+
|
| 22 |
+
def forward(self, x_0: torch.Tensor, x_T: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
| 23 |
+
"""
|
| 24 |
+
Diffusion forward function.
|
| 25 |
+
"""
|
| 26 |
+
t = t[(...,) + (None,) * (x_0.ndim - t.ndim)] if t.ndim < x_0.ndim else t
|
| 27 |
+
return (1 - t / self.T) * x_0 + (t / self.T) * x_T
|
| 28 |
+
|
| 29 |
+
def convert_from_pred(
|
| 30 |
+
self, pred: torch.Tensor, pred_type: 'velocity', x_t: torch.Tensor, t: torch.Tensor
|
| 31 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 32 |
+
"""
|
| 33 |
+
Convert from velocity prediction. Return predicted x_0 and x_T.
|
| 34 |
+
"""
|
| 35 |
+
t = t[(...,) + (None,) * (x_t.ndim - t.ndim)] if t.ndim < x_t.ndim else t
|
| 36 |
+
A_t = 1 - t / self.T
|
| 37 |
+
B_t = t / self.T
|
| 38 |
+
|
| 39 |
+
# pred_type = 'velocity'
|
| 40 |
+
pred_x_0 = x_t - B_t * pred
|
| 41 |
+
pred_x_T = x_t + A_t * pred
|
| 42 |
+
|
| 43 |
+
return pred_x_0, pred_x_T
|
| 44 |
+
|
| 45 |
+
def convert_to_pred(
|
| 46 |
+
self, x_0: torch.Tensor, x_T: torch.Tensor, t: torch.Tensor, pred_type: 'velocity'
|
| 47 |
+
) -> torch.FloatTensor:
|
| 48 |
+
"""
|
| 49 |
+
Convert to velocity prediction target given x_0 and x_T.
|
| 50 |
+
Predict velocity dx/dt based on the lerp schedule (x_T - x_0).
|
| 51 |
+
Proposed by rectified flow (https://arxiv.org/abs/2209.03003)
|
| 52 |
+
"""
|
| 53 |
+
# pred_type = 'velocity'
|
| 54 |
+
return x_T - x_0
|
ppd/utils/set_seed.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
def set_seed(seed=666):
|
| 6 |
+
import random, numpy as np, torch
|
| 7 |
+
random.seed(seed)
|
| 8 |
+
np.random.seed(seed)
|
| 9 |
+
torch.manual_seed(seed)
|
| 10 |
+
if torch.cuda.is_available():
|
| 11 |
+
torch.cuda.manual_seed_all(seed)
|
| 12 |
+
torch.backends.cudnn.deterministic = True
|
| 13 |
+
torch.backends.cudnn.benchmark = False
|
ppd/utils/timesteps.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Union
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class Timesteps:
|
| 6 |
+
"""
|
| 7 |
+
Sampling timesteps.
|
| 8 |
+
It defines the discretization of sampling steps.
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
T: int,
|
| 14 |
+
steps: int,
|
| 15 |
+
device: torch.device = "cpu",
|
| 16 |
+
):
|
| 17 |
+
self.T = T
|
| 18 |
+
timesteps = torch.arange(T, -1, -(T + 1) / steps, device=device).round().int()
|
| 19 |
+
self.timesteps = timesteps
|
| 20 |
+
|
| 21 |
+
def __len__(self) -> int:
|
| 22 |
+
"""
|
| 23 |
+
Number of sampling steps.
|
| 24 |
+
"""
|
| 25 |
+
return len(self.timesteps)
|
| 26 |
+
|
| 27 |
+
def __getitem__(self, idx: Union[int, torch.IntTensor]) -> torch.Tensor:
|
| 28 |
+
return self.timesteps[idx]
|
| 29 |
+
|
| 30 |
+
def index(self, t: torch.Tensor) -> torch.Tensor:
|
| 31 |
+
"""
|
| 32 |
+
Find index by t.
|
| 33 |
+
Return index of the same shape as t.
|
| 34 |
+
Index is -1 if t not found in timesteps.
|
| 35 |
+
"""
|
| 36 |
+
i, j = t.reshape(-1, 1).eq(self.timesteps).nonzero(as_tuple=True)
|
| 37 |
+
idx = torch.full_like(t, fill_value=-1, dtype=torch.int)
|
| 38 |
+
idx.view(-1)[i] = j.int()
|
| 39 |
+
return idx
|
ppd/utils/transform.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def image2tensor(image):
|
| 9 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 10 |
+
image = np.asarray(image / 255.).astype(np.float32)
|
| 11 |
+
image = np.transpose(image, (2, 0, 1))
|
| 12 |
+
image = np.ascontiguousarray(image).astype(np.float32)
|
| 13 |
+
image = torch.from_numpy(image).unsqueeze(0)
|
| 14 |
+
|
| 15 |
+
return image
|
| 16 |
+
|
| 17 |
+
def resize_1024(image):
|
| 18 |
+
image = cv2.resize(image, (1024, 768), interpolation=cv2.INTER_LINEAR)
|
| 19 |
+
return image
|
| 20 |
+
|
| 21 |
+
def resize_1024_crop(image):
|
| 22 |
+
ori_h, ori_w = image.shape[:2]
|
| 23 |
+
tar_w, tar_h = 1024, 768
|
| 24 |
+
if ori_h > ori_w:
|
| 25 |
+
resize_h = int(tar_w / ori_w * ori_h)
|
| 26 |
+
image = cv2.resize(image, (tar_w, resize_h), interpolation=cv2.INTER_LINEAR)
|
| 27 |
+
if resize_h > tar_h:
|
| 28 |
+
top = (resize_h - tar_h) // 2
|
| 29 |
+
image = image[top:top+tar_h, :]
|
| 30 |
+
else:
|
| 31 |
+
image = cv2.resize(image, (tar_w, tar_h), interpolation=cv2.INTER_LINEAR)
|
| 32 |
+
|
| 33 |
+
else:
|
| 34 |
+
resize_w = int(tar_h / ori_h * ori_w)
|
| 35 |
+
image = cv2.resize(image, (resize_w, tar_h), interpolation=cv2.INTER_LINEAR)
|
| 36 |
+
|
| 37 |
+
if resize_w > tar_w:
|
| 38 |
+
left = (resize_w - tar_w) // 2
|
| 39 |
+
image = image[:, left:left+tar_w]
|
| 40 |
+
else:
|
| 41 |
+
image = cv2.resize(image, (tar_w, tar_h), interpolation=cv2.INTER_LINEAR)
|
| 42 |
+
|
| 43 |
+
return image
|
| 44 |
+
|
| 45 |
+
def resize_keep_aspect(image):
|
| 46 |
+
ori_h, ori_w = image.shape[:2]
|
| 47 |
+
tar_w, tar_h = 1024, 768
|
| 48 |
+
ori_area = ori_h * ori_w
|
| 49 |
+
tar_area = tar_h * tar_w
|
| 50 |
+
scale = scale = (tar_area / ori_area) ** 0.5
|
| 51 |
+
resize_h = ori_h * scale
|
| 52 |
+
resize_w = ori_w * scale
|
| 53 |
+
resize_h = max(16, int(round(resize_h / 16)) * 16)
|
| 54 |
+
resize_w = max(16, int(round(resize_w / 16)) * 16)
|
| 55 |
+
if scale < 1:
|
| 56 |
+
image = cv2.resize(image, (resize_w, resize_h), interpolation=cv2.INTER_AREA)
|
| 57 |
+
else:
|
| 58 |
+
image = cv2.resize(image, (resize_w, resize_h), interpolation=cv2.INTER_CUBIC)
|
| 59 |
+
return image
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
|