Spaces:
Sleeping
Sleeping
initial commit
Browse files- app.py +50 -0
- packages.txt +1 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import shlex
|
| 3 |
+
import subprocess
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import numpy as np
|
| 7 |
+
import requests
|
| 8 |
+
import timm
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
from torchaudio.compliance import kaldi
|
| 12 |
+
|
| 13 |
+
TAG = "gaunernst/vit_base_patch16_1024_128.audiomae_as2m_ft_as20k"
|
| 14 |
+
MODEL = timm.create_model(f"hf_hub:{TAG}", pretrained=True).eval()
|
| 15 |
+
|
| 16 |
+
LABEL_URL = "https://huggingface.co/datasets/huggingface/label-files/raw/main/audioset-id2label.json"
|
| 17 |
+
AUDIOSET_LABELS = list(json.loads(requests.get(LABEL_URL).content).values())
|
| 18 |
+
|
| 19 |
+
SAMPLING_RATE = 16_000
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def resample(x: np.ndarray, sr: int):
|
| 23 |
+
cmd = f"ffmpeg -ar {sr} -f s16le -i - -ar {SAMPLING_RATE} -f f32le -"
|
| 24 |
+
proc = subprocess.run(shlex.split(cmd), capture_output=True, input=x.tobytes())
|
| 25 |
+
return np.frombuffer(proc.stdout, dtype=np.float32)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def preprocess(x: torch.Tensor):
|
| 29 |
+
melspec = kaldi.fbank(x.unsqueeze(0), htk_compat=True, window_type="hanning", num_mel_bins=128)
|
| 30 |
+
if melspec.shape[0] < 1024:
|
| 31 |
+
melspec = F.pad(melspec, (0, 0, 0, 1024 - melspec.shape[0]))
|
| 32 |
+
else:
|
| 33 |
+
melspec = melspec[:1024]
|
| 34 |
+
return melspec.view(1, 1, 1024, 128)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def predict(audio):
|
| 38 |
+
sr, x = audio
|
| 39 |
+
x = resample(x, sr)
|
| 40 |
+
x = torch.from_numpy(x)
|
| 41 |
+
|
| 42 |
+
with torch.inference_mode():
|
| 43 |
+
logits = MODEL(preprocess(x)).squeeze(0)
|
| 44 |
+
|
| 45 |
+
topk_probs, topk_classes = logits.softmax(dim=-1).topk(5)
|
| 46 |
+
return [[AUDIOSET_LABELS[cls], prob.item() * 100] for cls, prob in zip(topk_classes, topk_probs)]
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
iface = gr.Interface(fn=predict, inputs="audio", outputs="dataframe")
|
| 50 |
+
iface.launch()
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
requests
|
| 2 |
+
timm
|
| 3 |
+
numpy
|
| 4 |
+
torch
|
| 5 |
+
torchaudio
|