from datetime import datetime import gradio as gr import torch import torchaudio from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq import spaces device = "cuda" if torch.cuda.is_available() else "cpu" model_name = "ibm-granite/granite-speech-3.3-8b" processor = AutoProcessor.from_pretrained(model_name) tokenizer = processor.tokenizer model = AutoModelForSpeechSeq2Seq.from_pretrained( model_name, device_map=device, torch_dtype=torch.bfloat16 ) def _load_audio_mono_16k(file_path: str) -> torch.Tensor: wav, sr = torchaudio.load(file_path, normalize=True) if wav.shape[0] > 1: wav = torch.mean(wav, dim=0, keepdim=True) if sr != 16000: wav = torchaudio.functional.resample(wav, sr, 16000) return wav @spaces.GPU def process_audio(audio_path: str, instruction: str) -> str: if not audio_path: return "Please upload an audio file." wav = _load_audio_mono_16k(audio_path) date_string = datetime.now().strftime("%B %d, %Y") system_prompt = ( "Knowledge Cutoff Date: April 2024.\n" f"Today's Date: {date_string}.\n" "You are Granite, developed by IBM. You are a helpful AI assistant" ) user_prompt = f"<|audio|>{instruction.strip()}" chat = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) model_inputs = processor(prompt, wav, device=device, return_tensors="pt").to(device) outputs = model.generate( **model_inputs, max_new_tokens=4096, do_sample=False, num_beams=1, ) num_input_tokens = model_inputs["input_ids"].shape[-1] new_tokens = torch.unsqueeze(outputs[0, num_input_tokens:], dim=0) text = tokenizer.batch_decode(new_tokens, add_special_tokens=False, skip_special_tokens=True)[0] return text with gr.Blocks(title="Granite Speech Demo") as demo: gr.Markdown("# Granite Speech-to-Text Demo") gr.Markdown("Upload audio and transcribe with IBM Granite.") with gr.Row(): with gr.Column(): audio_input = gr.Audio(type="filepath", label="Upload Audio") instruction = gr.Textbox( label="Instruction", value="can you transcribe the speech into a written format?", ) submit_btn = gr.Button("Transcribe", variant="primary") with gr.Column(): output_text = gr.Textbox(label="Output", lines=12) submit_btn.click(process_audio, [audio_input, instruction], output_text) if __name__ == "__main__": demo.queue().launch(share=False, ssr_mode=False)