Spaces:
Running
on
Zero
Running
on
Zero
| import nodes | |
| import torch | |
| import numpy as np | |
| from einops import rearrange | |
| import comfy.model_management | |
| MAX_RESOLUTION = nodes.MAX_RESOLUTION | |
| CAMERA_DICT = { | |
| "base_T_norm": 1.5, | |
| "base_angle": np.pi/3, | |
| "Static": { "angle":[0., 0., 0.], "T":[0., 0., 0.]}, | |
| "Pan Up": { "angle":[0., 0., 0.], "T":[0., -1., 0.]}, | |
| "Pan Down": { "angle":[0., 0., 0.], "T":[0.,1.,0.]}, | |
| "Pan Left": { "angle":[0., 0., 0.], "T":[-1.,0.,0.]}, | |
| "Pan Right": { "angle":[0., 0., 0.], "T": [1.,0.,0.]}, | |
| "Zoom In": { "angle":[0., 0., 0.], "T": [0.,0.,2.]}, | |
| "Zoom Out": { "angle":[0., 0., 0.], "T": [0.,0.,-2.]}, | |
| "Anti Clockwise (ACW)": { "angle": [0., 0., -1.], "T":[0., 0., 0.]}, | |
| "ClockWise (CW)": { "angle": [0., 0., 1.], "T":[0., 0., 0.]}, | |
| } | |
| def process_pose_params(cam_params, width=672, height=384, original_pose_width=1280, original_pose_height=720, device='cpu'): | |
| def get_relative_pose(cam_params): | |
| """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py | |
| """ | |
| abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params] | |
| abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params] | |
| cam_to_origin = 0 | |
| target_cam_c2w = np.array([ | |
| [1, 0, 0, 0], | |
| [0, 1, 0, -cam_to_origin], | |
| [0, 0, 1, 0], | |
| [0, 0, 0, 1] | |
| ]) | |
| abs2rel = target_cam_c2w @ abs_w2cs[0] | |
| ret_poses = [target_cam_c2w, ] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]] | |
| ret_poses = np.array(ret_poses, dtype=np.float32) | |
| return ret_poses | |
| """Modified from https://github.com/hehao13/CameraCtrl/blob/main/inference.py | |
| """ | |
| cam_params = [Camera(cam_param) for cam_param in cam_params] | |
| sample_wh_ratio = width / height | |
| pose_wh_ratio = original_pose_width / original_pose_height # Assuming placeholder ratios, change as needed | |
| if pose_wh_ratio > sample_wh_ratio: | |
| resized_ori_w = height * pose_wh_ratio | |
| for cam_param in cam_params: | |
| cam_param.fx = resized_ori_w * cam_param.fx / width | |
| else: | |
| resized_ori_h = width / pose_wh_ratio | |
| for cam_param in cam_params: | |
| cam_param.fy = resized_ori_h * cam_param.fy / height | |
| intrinsic = np.asarray([[cam_param.fx * width, | |
| cam_param.fy * height, | |
| cam_param.cx * width, | |
| cam_param.cy * height] | |
| for cam_param in cam_params], dtype=np.float32) | |
| K = torch.as_tensor(intrinsic)[None] # [1, 1, 4] | |
| c2ws = get_relative_pose(cam_params) # Assuming this function is defined elsewhere | |
| c2ws = torch.as_tensor(c2ws)[None] # [1, n_frame, 4, 4] | |
| plucker_embedding = ray_condition(K, c2ws, height, width, device=device)[0].permute(0, 3, 1, 2).contiguous() # V, 6, H, W | |
| plucker_embedding = plucker_embedding[None] | |
| plucker_embedding = rearrange(plucker_embedding, "b f c h w -> b f h w c")[0] | |
| return plucker_embedding | |
| class Camera(object): | |
| """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py | |
| """ | |
| def __init__(self, entry): | |
| fx, fy, cx, cy = entry[1:5] | |
| self.fx = fx | |
| self.fy = fy | |
| self.cx = cx | |
| self.cy = cy | |
| c2w_mat = np.array(entry[7:]).reshape(4, 4) | |
| self.c2w_mat = c2w_mat | |
| self.w2c_mat = np.linalg.inv(c2w_mat) | |
| def ray_condition(K, c2w, H, W, device): | |
| """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py | |
| """ | |
| # c2w: B, V, 4, 4 | |
| # K: B, V, 4 | |
| B = K.shape[0] | |
| j, i = torch.meshgrid( | |
| torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype), | |
| torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype), | |
| indexing='ij' | |
| ) | |
| i = i.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW] | |
| j = j.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW] | |
| fx, fy, cx, cy = K.chunk(4, dim=-1) # B,V, 1 | |
| zs = torch.ones_like(i) # [B, HxW] | |
| xs = (i - cx) / fx * zs | |
| ys = (j - cy) / fy * zs | |
| zs = zs.expand_as(ys) | |
| directions = torch.stack((xs, ys, zs), dim=-1) # B, V, HW, 3 | |
| directions = directions / directions.norm(dim=-1, keepdim=True) # B, V, HW, 3 | |
| rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2) # B, V, 3, HW | |
| rays_o = c2w[..., :3, 3] # B, V, 3 | |
| rays_o = rays_o[:, :, None].expand_as(rays_d) # B, V, 3, HW | |
| # c2w @ dirctions | |
| rays_dxo = torch.cross(rays_o, rays_d) | |
| plucker = torch.cat([rays_dxo, rays_d], dim=-1) | |
| plucker = plucker.reshape(B, c2w.shape[1], H, W, 6) # B, V, H, W, 6 | |
| # plucker = plucker.permute(0, 1, 4, 2, 3) | |
| return plucker | |
| def get_camera_motion(angle, T, speed, n=81): | |
| def compute_R_form_rad_angle(angles): | |
| theta_x, theta_y, theta_z = angles | |
| Rx = np.array([[1, 0, 0], | |
| [0, np.cos(theta_x), -np.sin(theta_x)], | |
| [0, np.sin(theta_x), np.cos(theta_x)]]) | |
| Ry = np.array([[np.cos(theta_y), 0, np.sin(theta_y)], | |
| [0, 1, 0], | |
| [-np.sin(theta_y), 0, np.cos(theta_y)]]) | |
| Rz = np.array([[np.cos(theta_z), -np.sin(theta_z), 0], | |
| [np.sin(theta_z), np.cos(theta_z), 0], | |
| [0, 0, 1]]) | |
| R = np.dot(Rz, np.dot(Ry, Rx)) | |
| return R | |
| RT = [] | |
| for i in range(n): | |
| _angle = (i/n)*speed*(CAMERA_DICT["base_angle"])*angle | |
| R = compute_R_form_rad_angle(_angle) | |
| _T=(i/n)*speed*(CAMERA_DICT["base_T_norm"])*(T.reshape(3,1)) | |
| _RT = np.concatenate([R,_T], axis=1) | |
| RT.append(_RT) | |
| RT = np.stack(RT) | |
| return RT | |
| class WanCameraEmbedding: | |
| def INPUT_TYPES(cls): | |
| return { | |
| "required": { | |
| "camera_pose":(["Static","Pan Up","Pan Down","Pan Left","Pan Right","Zoom In","Zoom Out","Anti Clockwise (ACW)", "ClockWise (CW)"],{"default":"Static"}), | |
| "width": ("INT", {"default": 832, "min": 16, "max": MAX_RESOLUTION, "step": 16}), | |
| "height": ("INT", {"default": 480, "min": 16, "max": MAX_RESOLUTION, "step": 16}), | |
| "length": ("INT", {"default": 81, "min": 1, "max": MAX_RESOLUTION, "step": 4}), | |
| }, | |
| "optional":{ | |
| "speed":("FLOAT",{"default":1.0, "min": 0, "max": 10.0, "step": 0.1}), | |
| "fx":("FLOAT",{"default":0.5, "min": 0, "max": 1, "step": 0.000000001}), | |
| "fy":("FLOAT",{"default":0.5, "min": 0, "max": 1, "step": 0.000000001}), | |
| "cx":("FLOAT",{"default":0.5, "min": 0, "max": 1, "step": 0.01}), | |
| "cy":("FLOAT",{"default":0.5, "min": 0, "max": 1, "step": 0.01}), | |
| } | |
| } | |
| RETURN_TYPES = ("WAN_CAMERA_EMBEDDING","INT","INT","INT") | |
| RETURN_NAMES = ("camera_embedding","width","height","length") | |
| FUNCTION = "run" | |
| CATEGORY = "camera" | |
| def run(self, camera_pose, width, height, length, speed=1.0, fx=0.5, fy=0.5, cx=0.5, cy=0.5): | |
| """ | |
| Use Camera trajectory as extrinsic parameters to calculate Plücker embeddings (Sitzmannet al., 2021) | |
| Adapted from https://github.com/aigc-apps/VideoX-Fun/blob/main/comfyui/comfyui_nodes.py | |
| """ | |
| motion_list = [camera_pose] | |
| speed = speed | |
| angle = np.array(CAMERA_DICT[motion_list[0]]["angle"]) | |
| T = np.array(CAMERA_DICT[motion_list[0]]["T"]) | |
| RT = get_camera_motion(angle, T, speed, length) | |
| trajs=[] | |
| for cp in RT.tolist(): | |
| traj=[fx,fy,cx,cy,0,0] | |
| traj.extend(cp[0]) | |
| traj.extend(cp[1]) | |
| traj.extend(cp[2]) | |
| traj.extend([0,0,0,1]) | |
| trajs.append(traj) | |
| cam_params = np.array([[float(x) for x in pose] for pose in trajs]) | |
| cam_params = np.concatenate([np.zeros_like(cam_params[:, :1]), cam_params], 1) | |
| control_camera_video = process_pose_params(cam_params, width=width, height=height) | |
| control_camera_video = control_camera_video.permute([3, 0, 1, 2]).unsqueeze(0).to(device=comfy.model_management.intermediate_device()) | |
| control_camera_video = torch.concat( | |
| [ | |
| torch.repeat_interleave(control_camera_video[:, :, 0:1], repeats=4, dim=2), | |
| control_camera_video[:, :, 1:] | |
| ], dim=2 | |
| ).transpose(1, 2) | |
| # Reshape, transpose, and view into desired shape | |
| b, f, c, h, w = control_camera_video.shape | |
| control_camera_video = control_camera_video.contiguous().view(b, f // 4, 4, c, h, w).transpose(2, 3) | |
| control_camera_video = control_camera_video.contiguous().view(b, f // 4, c * 4, h, w).transpose(1, 2) | |
| return (control_camera_video, width, height, length) | |
| NODE_CLASS_MAPPINGS = { | |
| "WanCameraEmbedding": WanCameraEmbedding, | |
| } | |