Spaces:
Running
Running
Upload 5 files
Browse files- LionGuard2.safetensors +3 -0
- app.py +203 -0
- lionguard2.py +170 -0
- requirements.txt +4 -0
- utils.py +44 -0
LionGuard2.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:20665c1cde68b57c34444accc4f0fca5a3f58b3483d6bad2d6c6911e431afac9
|
| 3 |
+
size 3398496
|
app.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import openai
|
| 3 |
+
import os
|
| 4 |
+
import sys
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
# # Add the parent directory to the path to import from final_model
|
| 8 |
+
# sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'final_model'))
|
| 9 |
+
|
| 10 |
+
from safetensors.torch import load_file
|
| 11 |
+
from lionguard2 import LionGuard2
|
| 12 |
+
from utils import get_embeddings
|
| 13 |
+
|
| 14 |
+
# Set up OpenAI client
|
| 15 |
+
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
| 16 |
+
|
| 17 |
+
# Load LionGuard2 model
|
| 18 |
+
model = LionGuard2()
|
| 19 |
+
model.eval()
|
| 20 |
+
|
| 21 |
+
# Load model weights
|
| 22 |
+
model_path = os.path.join(os.path.dirname(__file__), '..', 'final_model', 'LionGuard2.safetensors')
|
| 23 |
+
state_dict = load_file(model_path)
|
| 24 |
+
model.load_state_dict(state_dict)
|
| 25 |
+
|
| 26 |
+
def lionguard_2(message, threshold=0.5):
|
| 27 |
+
"""
|
| 28 |
+
LionGuard 2 function that uses the actual model to determine if content is unsafe.
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
message: The text message to check
|
| 32 |
+
threshold: Probability threshold for flagging content as unsafe (default: 0.5)
|
| 33 |
+
|
| 34 |
+
Returns:
|
| 35 |
+
bool: True if content is flagged as unsafe, False otherwise
|
| 36 |
+
"""
|
| 37 |
+
try:
|
| 38 |
+
# Get embeddings for the message
|
| 39 |
+
embeddings = get_embeddings([message])
|
| 40 |
+
|
| 41 |
+
# Get predictions from the model
|
| 42 |
+
results = model.predict(embeddings)
|
| 43 |
+
|
| 44 |
+
# Check the binary classification result (overall safety)
|
| 45 |
+
binary_prob = results['binary'][0] # First (and only) message's binary probability
|
| 46 |
+
|
| 47 |
+
# Flag as unsafe if probability exceeds threshold
|
| 48 |
+
return binary_prob > threshold
|
| 49 |
+
|
| 50 |
+
except Exception as e:
|
| 51 |
+
print(f"Error in LionGuard 2: {e}")
|
| 52 |
+
# In case of error, default to not flagging to avoid blocking legitimate content
|
| 53 |
+
return False
|
| 54 |
+
|
| 55 |
+
def get_openai_response(message, system_prompt="You are a helpful assistant."):
|
| 56 |
+
"""Get response from OpenAI API"""
|
| 57 |
+
try:
|
| 58 |
+
response = client.chat.completions.create(
|
| 59 |
+
model="gpt-4.1-nano",
|
| 60 |
+
messages=[
|
| 61 |
+
{"role": "system", "content": system_prompt},
|
| 62 |
+
{"role": "user", "content": message}
|
| 63 |
+
],
|
| 64 |
+
max_tokens=500,
|
| 65 |
+
temperature=0,
|
| 66 |
+
seed=42,
|
| 67 |
+
)
|
| 68 |
+
return response.choices[0].message.content
|
| 69 |
+
except Exception as e:
|
| 70 |
+
return f"Error: {str(e)}. Please check your OpenAI API key."
|
| 71 |
+
|
| 72 |
+
def openai_moderation(message):
|
| 73 |
+
"""
|
| 74 |
+
OpenAI moderation function that uses OpenAI's built-in moderation API.
|
| 75 |
+
|
| 76 |
+
Args:
|
| 77 |
+
message: The text message to check
|
| 78 |
+
|
| 79 |
+
Returns:
|
| 80 |
+
bool: True if content is flagged as unsafe, False otherwise
|
| 81 |
+
"""
|
| 82 |
+
try:
|
| 83 |
+
response = client.moderations.create(input=message)
|
| 84 |
+
return response.results[0].flagged
|
| 85 |
+
except Exception as e:
|
| 86 |
+
print(f"Error in OpenAI moderation: {e}")
|
| 87 |
+
# In case of error, default to not flagging
|
| 88 |
+
return False
|
| 89 |
+
|
| 90 |
+
def process_message(message, history_no_mod, history_openai, history_lg):
|
| 91 |
+
"""Process message for all three chatbots"""
|
| 92 |
+
if not message.strip():
|
| 93 |
+
return history_no_mod, history_openai, history_lg, ""
|
| 94 |
+
|
| 95 |
+
# Process for gpt-4.1-nano (no moderation)
|
| 96 |
+
no_mod_response = get_openai_response(message)
|
| 97 |
+
history_no_mod.append({"role": "user", "content": message})
|
| 98 |
+
history_no_mod.append({"role": "assistant", "content": no_mod_response})
|
| 99 |
+
|
| 100 |
+
# Process for gpt-4.1-nano with OpenAI moderation
|
| 101 |
+
openai_flagged = openai_moderation(message)
|
| 102 |
+
history_openai.append({"role": "user", "content": message})
|
| 103 |
+
|
| 104 |
+
if openai_flagged:
|
| 105 |
+
openai_response = "🚫 This message has been flagged by OpenAI moderation"
|
| 106 |
+
history_openai.append({"role": "assistant", "content": openai_response})
|
| 107 |
+
else:
|
| 108 |
+
openai_response = get_openai_response(
|
| 109 |
+
message,
|
| 110 |
+
)
|
| 111 |
+
history_openai.append({"role": "assistant", "content": openai_response})
|
| 112 |
+
|
| 113 |
+
# Process for gpt-4.1-nano with LionGuard 2
|
| 114 |
+
lg_flagged = lionguard_2(message)
|
| 115 |
+
history_lg.append({"role": "user", "content": message})
|
| 116 |
+
|
| 117 |
+
if lg_flagged:
|
| 118 |
+
lg_response = "🚫 This message has been flagged by LionGuard 2"
|
| 119 |
+
history_lg.append({"role": "assistant", "content": lg_response})
|
| 120 |
+
else:
|
| 121 |
+
lg_response = get_openai_response(
|
| 122 |
+
message,
|
| 123 |
+
)
|
| 124 |
+
history_lg.append({"role": "assistant", "content": lg_response})
|
| 125 |
+
|
| 126 |
+
return history_no_mod, history_openai, history_lg, ""
|
| 127 |
+
|
| 128 |
+
def clear_all_chats():
|
| 129 |
+
"""Clear all chat histories"""
|
| 130 |
+
return [], [], []
|
| 131 |
+
|
| 132 |
+
# Create the Gradio interface
|
| 133 |
+
with gr.Blocks(title="LionGuard 2", theme=gr.themes.Soft()) as demo:
|
| 134 |
+
gr.Markdown("# EMNLP 2025 System Demonstration: LionGuard 2 🦁")
|
| 135 |
+
gr.Markdown("**LionGuard 2 is a content moderator localised to Singapore - use it to detect unsafe LLM inputs and outputs**")
|
| 136 |
+
|
| 137 |
+
with gr.Row():
|
| 138 |
+
with gr.Column(scale=1):
|
| 139 |
+
gr.Markdown("## 🔵 No Moderation")
|
| 140 |
+
chatbot_no_mod = gr.Chatbot(
|
| 141 |
+
height=800,
|
| 142 |
+
label="No Moderation",
|
| 143 |
+
show_label=False,
|
| 144 |
+
bubble_full_width=False,
|
| 145 |
+
type='messages'
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
with gr.Column(scale=1):
|
| 149 |
+
gr.Markdown("## 🟠 OpenAI Moderation")
|
| 150 |
+
chatbot_openai = gr.Chatbot(
|
| 151 |
+
height=800,
|
| 152 |
+
label="OpenAI Moderation",
|
| 153 |
+
show_label=False,
|
| 154 |
+
bubble_full_width=False,
|
| 155 |
+
type='messages'
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
with gr.Column(scale=1):
|
| 159 |
+
gr.Markdown("## 🛡️ LionGuard 2")
|
| 160 |
+
chatbot_lg = gr.Chatbot(
|
| 161 |
+
height=800,
|
| 162 |
+
label="LionGuard 2",
|
| 163 |
+
show_label=False,
|
| 164 |
+
bubble_full_width=False,
|
| 165 |
+
type='messages'
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
# Single input for all chatbots
|
| 169 |
+
gr.Markdown("### 💬 Send Message to All Models")
|
| 170 |
+
with gr.Row():
|
| 171 |
+
message_input = gr.Textbox(
|
| 172 |
+
placeholder="Type your message to compare responses...",
|
| 173 |
+
show_label=False,
|
| 174 |
+
scale=4
|
| 175 |
+
)
|
| 176 |
+
send_btn = gr.Button("Send", variant="primary", scale=1)
|
| 177 |
+
|
| 178 |
+
# Control buttons
|
| 179 |
+
with gr.Row():
|
| 180 |
+
clear_btn = gr.Button("Clear All Chats", variant="stop")
|
| 181 |
+
|
| 182 |
+
# Event handlers
|
| 183 |
+
send_btn.click(
|
| 184 |
+
process_message,
|
| 185 |
+
inputs=[message_input, chatbot_no_mod, chatbot_openai, chatbot_lg],
|
| 186 |
+
outputs=[chatbot_no_mod, chatbot_openai, chatbot_lg, message_input]
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
message_input.submit(
|
| 190 |
+
process_message,
|
| 191 |
+
inputs=[message_input, chatbot_no_mod, chatbot_openai, chatbot_lg],
|
| 192 |
+
outputs=[chatbot_no_mod, chatbot_openai, chatbot_lg, message_input]
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
# Clear button
|
| 196 |
+
clear_btn.click(
|
| 197 |
+
clear_all_chats,
|
| 198 |
+
outputs=[chatbot_no_mod, chatbot_openai, chatbot_lg]
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
# Launch the app
|
| 202 |
+
if __name__ == "__main__":
|
| 203 |
+
demo.launch(share=True, debug=True)
|
lionguard2.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
lionguard2.py
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
|
| 8 |
+
CATEGORIES = {
|
| 9 |
+
"binary": ["binary"],
|
| 10 |
+
"hateful": ["hateful_l1", "hateful_l2"],
|
| 11 |
+
"insults": ["insults"],
|
| 12 |
+
"sexual": [
|
| 13 |
+
"sexual_l1",
|
| 14 |
+
"sexual_l2",
|
| 15 |
+
],
|
| 16 |
+
"physical_violence": ["physical_violence"],
|
| 17 |
+
"self_harm": ["self_harm_l1", "self_harm_l2"],
|
| 18 |
+
"all_other_misconduct": [
|
| 19 |
+
"all_other_misconduct_l1",
|
| 20 |
+
"all_other_misconduct_l2",
|
| 21 |
+
],
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
INPUT_DIMENSION = 3072 # length of OpenAI embeddings
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class LionGuard2(nn.Module):
|
| 28 |
+
def __init__(
|
| 29 |
+
self,
|
| 30 |
+
input_dim=INPUT_DIMENSION,
|
| 31 |
+
label_names=CATEGORIES.keys(),
|
| 32 |
+
categories=CATEGORIES,
|
| 33 |
+
):
|
| 34 |
+
"""
|
| 35 |
+
LionGuard2 is a localised content moderation model that flags whether text violates the following categories:
|
| 36 |
+
|
| 37 |
+
1. `hateful`: Text that discriminates, criticizes, insults, denounces, or dehumanizes a person or group on the basis of a protected identity.
|
| 38 |
+
|
| 39 |
+
There are two sub-categories for the `hateful` category:
|
| 40 |
+
a. `level_1_discriminatory`: Text that contains derogatory or generalized negative statements targeting a protected group.
|
| 41 |
+
b. `level_2_hate_speech`: Text that explicitly calls for harm or violence against a protected group; or language praising or justifying violence against them.
|
| 42 |
+
|
| 43 |
+
2. `insults`: Text that insults demeans, humiliates, mocks, or belittles a person or group **without** referencing a legally protected trait.
|
| 44 |
+
For example, this includes personal attacks on attributes such as someone’s appearance, intellect, behavior, or other non-protected characteristics.
|
| 45 |
+
|
| 46 |
+
3. `sexual`: Text that depicts or indicates sexual interest, activity, or arousal, using direct or indirect references to body parts, sexual acts, or physical traits.
|
| 47 |
+
This includes sexual content that may be inappropriate for certain audiences.
|
| 48 |
+
|
| 49 |
+
There are two sub-categories for the `sexual` category:
|
| 50 |
+
a. `level_1_not_appropriate_for_minors`: Text that contains mild-to-moderate sexual content that is generally adult-oriented or potentially unsuitable for those under 16.
|
| 51 |
+
May include matter-of-fact discussions about sex, sexuality, or sexual preferences.
|
| 52 |
+
b. `level_2_not_appropriate_for_all_ages`: Text that contains content aimed at adults and considered explicit, graphic, or otherwise inappropriate for a broad audience.
|
| 53 |
+
May include explicit descriptions of sexual acts, detailed sexual fantasies, or highly sexualized content.
|
| 54 |
+
|
| 55 |
+
4. `physical_violence`: Text that includes glorification of violence or threats to inflict physical harm or injury on a person, group, or entity.
|
| 56 |
+
|
| 57 |
+
5. `self_harm`: Text that promotes, suggests, or expresses intent to self-harm or commit suicide.
|
| 58 |
+
|
| 59 |
+
There are two sub-categories for the `self_harm` category:
|
| 60 |
+
a. `level_1_self_harm_intent`: Text that expresses suicidal thoughts or self-harm intention; or content encouraging someone to self-harm.
|
| 61 |
+
b. `level_2_self_harm_action`: Text that describes or indicates ongoing or imminent self-harm behavior.
|
| 62 |
+
|
| 63 |
+
6. `all_other_misconduct`: This is a catch-all category for any other unsafe text that does not fit into the other categories.
|
| 64 |
+
It includes text that seeks or provides information about engaging in misconduct, wrongdoing, or criminal activity, or that threatens to harm,
|
| 65 |
+
defraud, or exploit others. This includes facilitating illegal acts (under Singapore law) or other forms of socially harmful activity.
|
| 66 |
+
|
| 67 |
+
There are two sub-categories for the `all_other_misconduct` category:
|
| 68 |
+
a. `level_1_not_socially_accepted`: Text that advocates or instructs on unethical/immoral activities that may not necessarily be illegal but are socially condemned.
|
| 69 |
+
b. `level_2_illegal_activities`: Text that seeks or provides instructions to carry out clearly illegal activities or serious wrongdoing; includes credible threats of severe harm.
|
| 70 |
+
|
| 71 |
+
Lastly, there is an additional `binary` category (#7) which flags whether the text is unsafe in general.
|
| 72 |
+
|
| 73 |
+
The model takes in as input text, after it has been encoded with OpenAI's `text-embedding-3-small` model.
|
| 74 |
+
|
| 75 |
+
The model outputs the probabilities of each category being true.
|
| 76 |
+
|
| 77 |
+
================================
|
| 78 |
+
|
| 79 |
+
Args:
|
| 80 |
+
input_dim: The dimension of the input embeddings. This defaults to 3072, which is the dimension of the embeddings from OpenAI's `text-embedding-3-small` model. This should not be changed.
|
| 81 |
+
label_names: The names of the labels. This defaults to the keys of the CATEGORIES dictionary. This should not be changed.
|
| 82 |
+
categories: The categories of the labels. This defaults to the CATEGORIES dictionary. This should not be changed.
|
| 83 |
+
|
| 84 |
+
Returns:
|
| 85 |
+
A LionGuard2 model.
|
| 86 |
+
"""
|
| 87 |
+
super(LionGuard2, self).__init__()
|
| 88 |
+
self.label_names = label_names
|
| 89 |
+
self.n_outputs = len(label_names)
|
| 90 |
+
self.categories = categories
|
| 91 |
+
|
| 92 |
+
# Shared layers
|
| 93 |
+
self.shared_layers = nn.Sequential(
|
| 94 |
+
nn.Linear(input_dim, 256),
|
| 95 |
+
nn.ReLU(),
|
| 96 |
+
nn.Dropout(0.2),
|
| 97 |
+
nn.Linear(256, 128),
|
| 98 |
+
nn.ReLU(),
|
| 99 |
+
nn.Dropout(0.2),
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# Output heads for each label
|
| 103 |
+
self.output_heads = nn.ModuleList(
|
| 104 |
+
[
|
| 105 |
+
nn.Sequential(
|
| 106 |
+
nn.Linear(128, 32),
|
| 107 |
+
nn.ReLU(),
|
| 108 |
+
nn.Linear(32, 2), # 2 thresholds for ordinal classification
|
| 109 |
+
nn.Sigmoid(),
|
| 110 |
+
)
|
| 111 |
+
for _ in range(self.n_outputs)
|
| 112 |
+
]
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
def forward(self, x):
|
| 116 |
+
# Pass through shared layers
|
| 117 |
+
h = self.shared_layers(x)
|
| 118 |
+
# Pass through each output head
|
| 119 |
+
return [head(h) for head in self.output_heads]
|
| 120 |
+
|
| 121 |
+
def predict(self, embeddings):
|
| 122 |
+
"""
|
| 123 |
+
Predict the probabilities of each label being true.
|
| 124 |
+
|
| 125 |
+
Args:
|
| 126 |
+
embeddings: A numpy array of embeddings (N * INPUT_DIMENSION)
|
| 127 |
+
|
| 128 |
+
Returns:
|
| 129 |
+
A dictionary of probabilities.
|
| 130 |
+
"""
|
| 131 |
+
# Convert input to PyTorch tensor if not already
|
| 132 |
+
if not isinstance(embeddings, torch.Tensor):
|
| 133 |
+
x = torch.tensor(embeddings, dtype=torch.float32)
|
| 134 |
+
else:
|
| 135 |
+
x = embeddings
|
| 136 |
+
|
| 137 |
+
# Pass through model
|
| 138 |
+
with torch.no_grad():
|
| 139 |
+
outputs = self.forward(x)
|
| 140 |
+
|
| 141 |
+
# Stack outputs into a single tensor
|
| 142 |
+
raw_predictions = torch.stack(outputs) # SIZE:
|
| 143 |
+
|
| 144 |
+
# Extract and format probabilities from raw predictions
|
| 145 |
+
output = {}
|
| 146 |
+
for i, main_cat in enumerate(self.label_names):
|
| 147 |
+
sub_categories = self.categories[main_cat]
|
| 148 |
+
for j, sub_cat in enumerate(sub_categories):
|
| 149 |
+
# j=0 uses P(y>0)
|
| 150 |
+
# j=1 uses P(y>1) if L2 category exists
|
| 151 |
+
output[sub_cat] = raw_predictions[i, :, j]
|
| 152 |
+
|
| 153 |
+
# Post processing step:
|
| 154 |
+
# If L2 category exists, and P(L2) > P(L1),
|
| 155 |
+
# Set both P(L1) and P(L2) to their average to maintain ordinal consistency
|
| 156 |
+
if len(sub_categories) > 1:
|
| 157 |
+
l1 = output[sub_categories[0]]
|
| 158 |
+
l2 = output[sub_categories[1]]
|
| 159 |
+
|
| 160 |
+
# Update probabilities on samples where P(L2) > P(L1)
|
| 161 |
+
mask = l2 > l1
|
| 162 |
+
mean_prob = (l1 + l2) / 2
|
| 163 |
+
l1[mask] = mean_prob[mask]
|
| 164 |
+
l2[mask] = mean_prob[mask]
|
| 165 |
+
output[sub_categories[0]] = l1
|
| 166 |
+
output[sub_categories[1]] = l2
|
| 167 |
+
|
| 168 |
+
for key, value in output.items():
|
| 169 |
+
output[key] = value.numpy().tolist()
|
| 170 |
+
return output
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy==2.1.3
|
| 2 |
+
openai==1.83.0
|
| 3 |
+
safetensors==0.5.3
|
| 4 |
+
torch==2.7.0
|
utils.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
utils.py
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
# Standard imports
|
| 6 |
+
import os
|
| 7 |
+
from typing import List
|
| 8 |
+
|
| 9 |
+
# Third party imports
|
| 10 |
+
import numpy as np
|
| 11 |
+
from openai import OpenAI
|
| 12 |
+
|
| 13 |
+
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
|
| 14 |
+
|
| 15 |
+
# Maximum tokens for text-embedding-3-small
|
| 16 |
+
MAX_TOKENS = 8191 # We don't have access to the tokenizer for text-embedding-3-small, and just assume 1 character = 1 token here
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def get_embeddings(
|
| 20 |
+
texts: List[str], model: str = "text-embedding-3-large"
|
| 21 |
+
) -> List[List[float]]:
|
| 22 |
+
"""
|
| 23 |
+
Generate embeddings for a list of texts using OpenAI API synchronously.
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
texts: List of strings to embed.
|
| 27 |
+
model: OpenAI embedding model to use (default: text-embedding-3-small).
|
| 28 |
+
|
| 29 |
+
Returns:
|
| 30 |
+
A list of embeddings (each embedding is a list of floats).
|
| 31 |
+
|
| 32 |
+
Raises:
|
| 33 |
+
Exception: If the OpenAI API call fails.
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
# Truncate texts to max token limit
|
| 37 |
+
truncated_texts = [text[:MAX_TOKENS] for text in texts]
|
| 38 |
+
|
| 39 |
+
# Make the API call
|
| 40 |
+
response = client.embeddings.create(input=truncated_texts, model=model)
|
| 41 |
+
|
| 42 |
+
# Extract embeddings from response
|
| 43 |
+
embeddings = np.array([data.embedding for data in response.data])
|
| 44 |
+
return embeddings
|