Spaces:
Running
on
Zero
Running
on
Zero
gaparmar
commited on
Commit
·
6213d31
1
Parent(s):
49b7596
adding utils:
Browse files- app.py +32 -10
- my_utils/default_values.py +29 -0
- my_utils/group_inference.py +260 -0
- my_utils/scores.py +221 -0
- my_utils/solvers.py +33 -0
app.py
CHANGED
|
@@ -9,22 +9,13 @@ import torch.nn.functional as F
|
|
| 9 |
from diffusers import FluxPipeline, AutoencoderTiny, FluxKontextPipeline
|
| 10 |
from transformers import CLIPProcessor, CLIPModel, AutoModel
|
| 11 |
from transformers.models.clip.modeling_clip import _get_vector_norm
|
| 12 |
-
from nunchaku import NunchakuFluxTransformer2dModel
|
| 13 |
-
from nunchaku.utils import get_precision
|
| 14 |
from my_utils.group_inference import run_group_inference
|
| 15 |
from my_utils.default_values import apply_defaults
|
| 16 |
-
from diffusers.hooks import apply_group_offloading
|
| 17 |
-
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, FluxTransformer2DModel, FluxPipeline
|
| 18 |
-
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
|
| 19 |
-
|
| 20 |
import argparse
|
| 21 |
|
| 22 |
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
|
| 23 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda")
|
| 24 |
-
pipe.enable_model_cpu_offload()
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
# pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda")
|
| 28 |
|
| 29 |
m_clip = CLIPModel.from_pretrained("multimodalart/clip-vit-base-patch32").to("cuda")
|
| 30 |
prep_clip = CLIPProcessor.from_pretrained("multimodalart/clip-vit-base-patch32")
|
|
@@ -283,6 +274,22 @@ with gr.Blocks(css=custom_css, js=js_func, theme=gr.themes.Soft(), elem_id="main
|
|
| 283 |
binary_term = gr.Dropdown(choices=["diversity_dino", "diversity_clip", "dino_cls_pairwise"], value=default_args.binary_term,
|
| 284 |
container=False, show_label=False, scale=3)
|
| 285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
with gr.Row(scale=1):
|
| 287 |
generate_btn = gr.Button("Generate", variant="primary")
|
| 288 |
|
|
@@ -295,4 +302,19 @@ with gr.Blocks(css=custom_css, js=js_func, theme=gr.themes.Soft(), elem_id="main
|
|
| 295 |
outputs=[output_gallery_group]
|
| 296 |
)
|
| 297 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
demo.launch()
|
|
|
|
| 9 |
from diffusers import FluxPipeline, AutoencoderTiny, FluxKontextPipeline
|
| 10 |
from transformers import CLIPProcessor, CLIPModel, AutoModel
|
| 11 |
from transformers.models.clip.modeling_clip import _get_vector_norm
|
|
|
|
|
|
|
| 12 |
from my_utils.group_inference import run_group_inference
|
| 13 |
from my_utils.default_values import apply_defaults
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
import argparse
|
| 15 |
|
| 16 |
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
|
| 17 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda")
|
| 18 |
+
# pipe.enable_model_cpu_offload()
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
m_clip = CLIPModel.from_pretrained("multimodalart/clip-vit-base-patch32").to("cuda")
|
| 21 |
prep_clip = CLIPProcessor.from_pretrained("multimodalart/clip-vit-base-patch32")
|
|
|
|
| 274 |
binary_term = gr.Dropdown(choices=["diversity_dino", "diversity_clip", "dino_cls_pairwise"], value=default_args.binary_term,
|
| 275 |
container=False, show_label=False, scale=3)
|
| 276 |
|
| 277 |
+
|
| 278 |
+
# Instructions for users
|
| 279 |
+
gr.HTML(
|
| 280 |
+
"""
|
| 281 |
+
<div style="margin: 15px 0; padding: 10px; background-color: #f0f0f0; border-radius: 5px; font-size: 14px;">
|
| 282 |
+
<strong>Tips:</strong>
|
| 283 |
+
<ul style="margin: 5px 0; padding-left: 20px;">
|
| 284 |
+
<li>Try out the (cached) examples below first! </li>
|
| 285 |
+
<li>Higher lambda → more diverse outputs (no added runtime cost)</li>
|
| 286 |
+
<li>Lower lambda → improved quality and text-adherence (no added runtime cost)</li>
|
| 287 |
+
<li>More starting candidates → better quality and diversity (slower runtime)</li>
|
| 288 |
+
</ul>
|
| 289 |
+
</div>
|
| 290 |
+
"""
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
with gr.Row(scale=1):
|
| 294 |
generate_btn = gr.Button("Generate", variant="primary")
|
| 295 |
|
|
|
|
| 302 |
outputs=[output_gallery_group]
|
| 303 |
)
|
| 304 |
|
| 305 |
+
gr.Examples(
|
| 306 |
+
examples=[
|
| 307 |
+
["Cat is sitting in a cafe and working on his laptop.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"],
|
| 308 |
+
["Cat is playing outside in nature.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"],
|
| 309 |
+
["Cat is drinking a glass of milk.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"],
|
| 310 |
+
["Cat is an astronaut landing on the moon.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"],
|
| 311 |
+
["Cat is surfing in the ocean.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"],
|
| 312 |
+
],
|
| 313 |
+
inputs=[prompt, starting_candidates, output_group_size, pruning_ratio, lambda_score, seed, unary_term, binary_term, input_image],
|
| 314 |
+
outputs=[output_gallery_group],
|
| 315 |
+
fn=generate_images,
|
| 316 |
+
cache_examples=True,
|
| 317 |
+
label="Examples"
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
demo.launch()
|
my_utils/default_values.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
DEFAULT_VALUES = {
|
| 2 |
+
"flux-kontext": {
|
| 3 |
+
"num_inference_steps": 28,
|
| 4 |
+
"guidance_scale": 3.5,
|
| 5 |
+
"starting_candidates": 32,
|
| 6 |
+
"output_group_size": 4,
|
| 7 |
+
"pruning_ratio": 0.5,
|
| 8 |
+
"lambda_score": 1.0,
|
| 9 |
+
"output_dir": "outputs/flux-kontext",
|
| 10 |
+
"height": 512,
|
| 11 |
+
"width": 512,
|
| 12 |
+
"unary_term": "clip_text_img",
|
| 13 |
+
"binary_term": "diversity_dino"
|
| 14 |
+
}
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
def apply_defaults(args):
|
| 18 |
+
model_name = args.model_name
|
| 19 |
+
|
| 20 |
+
if model_name not in DEFAULT_VALUES:
|
| 21 |
+
raise ValueError(f"Unknown model name: {model_name}. Available models: {list(DEFAULT_VALUES.keys())}")
|
| 22 |
+
|
| 23 |
+
defaults = DEFAULT_VALUES[model_name]
|
| 24 |
+
|
| 25 |
+
for param_name, default_value in defaults.items():
|
| 26 |
+
if hasattr(args, param_name) and getattr(args, param_name) is None:
|
| 27 |
+
setattr(args, param_name, default_value)
|
| 28 |
+
|
| 29 |
+
return args
|
my_utils/group_inference.py
ADDED
|
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, sys, time
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
import spaces
|
| 5 |
+
import numpy as np
|
| 6 |
+
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
| 7 |
+
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps
|
| 8 |
+
|
| 9 |
+
from my_utils.solvers import gurobi_solver
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def get_next_size(curr_size, final_size, keep_ratio):
|
| 13 |
+
"""Calculate next size for progressive pruning during denoising.
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
curr_size: Current number of candidates
|
| 17 |
+
final_size: Target final size
|
| 18 |
+
keep_ratio: Fraction of candidates to keep at each step
|
| 19 |
+
"""
|
| 20 |
+
if curr_size < final_size:
|
| 21 |
+
raise ValueError("Current size is less than the final size!")
|
| 22 |
+
elif curr_size == final_size:
|
| 23 |
+
return curr_size
|
| 24 |
+
else:
|
| 25 |
+
next_size = math.ceil(curr_size * keep_ratio)
|
| 26 |
+
return max(next_size, final_size)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
@torch.no_grad()
|
| 30 |
+
def decode_latent(z, pipe, height, width):
|
| 31 |
+
"""Decode latent tensor to image using VAE decoder.
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
z: Latent tensor to decode
|
| 35 |
+
pipe: Diffusion pipeline with VAE
|
| 36 |
+
height: Image height
|
| 37 |
+
width: Image width
|
| 38 |
+
"""
|
| 39 |
+
z = pipe._unpack_latents(z, height, width, pipe.vae_scale_factor)
|
| 40 |
+
z = (z / pipe.vae.config.scaling_factor) + pipe.vae.config.shift_factor
|
| 41 |
+
z = pipe.vae.decode(z, return_dict=False)[0].clamp(-1,1)
|
| 42 |
+
return z
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
@torch.no_grad()
|
| 46 |
+
@spaces.GPU(duration=300)
|
| 47 |
+
def run_group_inference(pipe, model_name=None, prompt=None, prompt_2=None, negative_prompt=None, negative_prompt_2=None,
|
| 48 |
+
true_cfg_scale=1.0, height=None, width=None, num_inference_steps=28, sigmas=None, guidance_scale=3.5,
|
| 49 |
+
l_generator=None, max_sequence_length=512,
|
| 50 |
+
# group inference arguments
|
| 51 |
+
unary_score_fn=None, binary_score_fn=None,
|
| 52 |
+
starting_candidates=None, output_group_size=None, pruning_ratio=None, lambda_score=None,
|
| 53 |
+
# control arguments
|
| 54 |
+
control_image=None,
|
| 55 |
+
# input image for flux-kontext
|
| 56 |
+
input_image=None,
|
| 57 |
+
skip_first_cfg=True
|
| 58 |
+
):
|
| 59 |
+
"""Run group inference with progressive pruning for diverse, high-quality image generation.
|
| 60 |
+
|
| 61 |
+
Args:
|
| 62 |
+
pipe: Diffusion pipeline
|
| 63 |
+
model_name: Model type (flux-schnell, flux-dev, flux-depth, flux-canny, flux-kontext)
|
| 64 |
+
prompt: Text prompt for generation
|
| 65 |
+
unary_score_fn: Function to compute image quality scores
|
| 66 |
+
binary_score_fn: Function to compute pairwise diversity scores
|
| 67 |
+
starting_candidates: Initial number of noise samples
|
| 68 |
+
output_group_size: Final number of images to generate
|
| 69 |
+
pruning_ratio: Fraction to prune at each denoising step
|
| 70 |
+
lambda_score: Weight between quality and diversity terms
|
| 71 |
+
control_image: Control image for depth/canny models
|
| 72 |
+
input_image: Input image for flux-kontext editing
|
| 73 |
+
"""
|
| 74 |
+
if l_generator is None:
|
| 75 |
+
l_generator = [torch.Generator("cpu").manual_seed(42+_seed) for _seed in range(starting_candidates)]
|
| 76 |
+
|
| 77 |
+
# use the default height and width if not provided
|
| 78 |
+
height = height or pipe.default_sample_size * pipe.vae_scale_factor
|
| 79 |
+
width = width or pipe.default_sample_size * pipe.vae_scale_factor
|
| 80 |
+
|
| 81 |
+
pipe._guidance_scale = guidance_scale
|
| 82 |
+
pipe._current_timestep = None
|
| 83 |
+
pipe._interrupt = False
|
| 84 |
+
pipe._joint_attention_kwargs = {}
|
| 85 |
+
|
| 86 |
+
device = pipe._execution_device
|
| 87 |
+
|
| 88 |
+
lora_scale = None
|
| 89 |
+
has_neg_prompt = negative_prompt is not None
|
| 90 |
+
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
|
| 91 |
+
|
| 92 |
+
# 3. Encode prompts
|
| 93 |
+
prompt_embeds, pooled_prompt_embeds, text_ids = pipe.encode_prompt(prompt=prompt, prompt_2=prompt_2, prompt_embeds=None, pooled_prompt_embeds=None, device=device, max_sequence_length=max_sequence_length, lora_scale=lora_scale)
|
| 94 |
+
|
| 95 |
+
if do_true_cfg:
|
| 96 |
+
negative_prompt_embeds, negative_pooled_prompt_embeds, _ = pipe.encode_prompt(prompt=negative_prompt, prompt_2=negative_prompt_2, prompt_embeds=None, pooled_prompt_embeds=None, device=device, max_sequence_length=max_sequence_length, lora_scale=lora_scale)
|
| 97 |
+
|
| 98 |
+
# 4. Prepare latent variables
|
| 99 |
+
if model_name in ["flux-depth", "flux-canny"]:
|
| 100 |
+
# for control models, the pipe.transformer.config.in_channels is doubled
|
| 101 |
+
num_channels_latents = pipe.transformer.config.in_channels // 8
|
| 102 |
+
else:
|
| 103 |
+
num_channels_latents = pipe.transformer.config.in_channels // 4
|
| 104 |
+
|
| 105 |
+
# Handle different model types
|
| 106 |
+
image_latents = None
|
| 107 |
+
image_ids = None
|
| 108 |
+
if model_name == "flux-kontext":
|
| 109 |
+
processed_image = pipe.image_processor.preprocess(input_image, height=height, width=width)
|
| 110 |
+
l_latents = []
|
| 111 |
+
for _gen in l_generator:
|
| 112 |
+
latents, img_latents, latent_ids, img_ids = pipe.prepare_latents(
|
| 113 |
+
processed_image, 1, num_channels_latents, height, width,
|
| 114 |
+
prompt_embeds.dtype, device, _gen
|
| 115 |
+
)
|
| 116 |
+
l_latents.append(latents)
|
| 117 |
+
# Use the image_latents and image_ids from the first generator
|
| 118 |
+
_, image_latents, latent_image_ids, image_ids = pipe.prepare_latents(
|
| 119 |
+
processed_image, 1, num_channels_latents, height, width,
|
| 120 |
+
prompt_embeds.dtype, device, l_generator[0]
|
| 121 |
+
)
|
| 122 |
+
# Combine latent_ids with image_ids
|
| 123 |
+
if image_ids is not None:
|
| 124 |
+
latent_image_ids = torch.cat([latent_image_ids, image_ids], dim=0)
|
| 125 |
+
else:
|
| 126 |
+
# For other models (flux-schnell, flux-dev, flux-depth, flux-canny)
|
| 127 |
+
l_latents = [pipe.prepare_latents(1, num_channels_latents, height, width, prompt_embeds.dtype, device, _gen)[0] for _gen in l_generator]
|
| 128 |
+
_, latent_image_ids = pipe.prepare_latents(1, num_channels_latents, height, width, prompt_embeds.dtype, device, l_generator[0])
|
| 129 |
+
|
| 130 |
+
# 4.5. Prepare control image if provided
|
| 131 |
+
control_latents = None
|
| 132 |
+
if model_name in ["flux-depth", "flux-canny"]:
|
| 133 |
+
control_image_processed = pipe.prepare_image(image=control_image, width=width, height=height, batch_size=1, num_images_per_prompt=1, device=device, dtype=pipe.vae.dtype,)
|
| 134 |
+
if control_image_processed.ndim == 4:
|
| 135 |
+
control_latents = pipe.vae.encode(control_image_processed).latents
|
| 136 |
+
control_latents = (control_latents - pipe.vae.config.shift_factor) * pipe.vae.config.scaling_factor
|
| 137 |
+
height_control_image, width_control_image = control_latents.shape[2:]
|
| 138 |
+
control_latents = pipe._pack_latents(control_latents, 1, num_channels_latents, height_control_image, width_control_image)
|
| 139 |
+
|
| 140 |
+
# 5. Prepare timesteps
|
| 141 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
|
| 142 |
+
image_seq_len = latent_image_ids.shape[0]
|
| 143 |
+
mu = calculate_shift(image_seq_len, pipe.scheduler.config.get("base_image_seq_len", 256), pipe.scheduler.config.get("max_image_seq_len", 4096), pipe.scheduler.config.get("base_shift", 0.5), pipe.scheduler.config.get("max_shift", 1.15))
|
| 144 |
+
timesteps, num_inference_steps = retrieve_timesteps(pipe.scheduler, num_inference_steps, device, sigmas=sigmas, mu=mu)
|
| 145 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * pipe.scheduler.order, 0)
|
| 146 |
+
pipe._num_timesteps = len(timesteps)
|
| 147 |
+
_dtype = l_latents[0].dtype
|
| 148 |
+
|
| 149 |
+
# handle guidance
|
| 150 |
+
if pipe.transformer.config.guidance_embeds:
|
| 151 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(1)
|
| 152 |
+
else:
|
| 153 |
+
guidance = None
|
| 154 |
+
guidance_1 = torch.full([1], 1.0, device=device, dtype=torch.float32).expand(1)
|
| 155 |
+
|
| 156 |
+
# 6. Denoising loop
|
| 157 |
+
with pipe.progress_bar(total=num_inference_steps) as progress_bar:
|
| 158 |
+
for i, t in enumerate(timesteps):
|
| 159 |
+
if pipe.interrupt:
|
| 160 |
+
continue
|
| 161 |
+
if guidance is not None and skip_first_cfg and i == 0:
|
| 162 |
+
curr_guidance = guidance_1
|
| 163 |
+
else:
|
| 164 |
+
curr_guidance = guidance
|
| 165 |
+
|
| 166 |
+
pipe._current_timestep = t
|
| 167 |
+
timestep = t.expand(1).to(_dtype)
|
| 168 |
+
# ipdb.set_trace()
|
| 169 |
+
next_latents = []
|
| 170 |
+
x0_preds = []
|
| 171 |
+
# do 1 denoising step
|
| 172 |
+
for _latent in l_latents:
|
| 173 |
+
# prepare input for transformer based on model type
|
| 174 |
+
if model_name in ["flux-depth", "flux-canny"]:
|
| 175 |
+
# Control models: concatenate control latents along dim=2
|
| 176 |
+
latent_model_input = torch.cat([_latent, control_latents], dim=2)
|
| 177 |
+
elif model_name == "flux-kontext":
|
| 178 |
+
# Kontext model: concatenate image latents along dim=1
|
| 179 |
+
latent_model_input = torch.cat([_latent, image_latents], dim=1)
|
| 180 |
+
else:
|
| 181 |
+
# Standard models (flux-schnell, flux-dev): use latents as is
|
| 182 |
+
latent_model_input = _latent
|
| 183 |
+
|
| 184 |
+
noise_pred = pipe.transformer(hidden_states=latent_model_input, timestep=timestep / 1000, guidance=curr_guidance, pooled_projections=pooled_prompt_embeds, encoder_hidden_states=prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=pipe.joint_attention_kwargs, return_dict=False)[0]
|
| 185 |
+
|
| 186 |
+
# For flux-kontext, we need to slice the noise_pred to match the latents size
|
| 187 |
+
if model_name == "flux-kontext":
|
| 188 |
+
noise_pred = noise_pred[:, : _latent.size(1)]
|
| 189 |
+
|
| 190 |
+
if do_true_cfg:
|
| 191 |
+
neg_noise_pred = pipe.transformer(hidden_states=latent_model_input, timestep=timestep / 1000, guidance=curr_guidance, pooled_projections=negative_pooled_prompt_embeds, encoder_hidden_states=negative_prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=pipe.joint_attention_kwargs, return_dict=False)[0]
|
| 192 |
+
if model_name == "flux-kontext":
|
| 193 |
+
neg_noise_pred = neg_noise_pred[:, : _latent.size(1)]
|
| 194 |
+
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
|
| 195 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 196 |
+
_latent = pipe.scheduler.step(noise_pred, t, _latent, return_dict=False)[0]
|
| 197 |
+
# the scheduler is not state-less, it maintains a step index that is incremented by one after each step,
|
| 198 |
+
# so we need to decrease it here
|
| 199 |
+
if hasattr(pipe.scheduler, "_step_index"):
|
| 200 |
+
pipe.scheduler._step_index -= 1
|
| 201 |
+
|
| 202 |
+
if type(pipe.scheduler) == FlowMatchEulerDiscreteScheduler:
|
| 203 |
+
dt = 0.0 - pipe.scheduler.sigmas[i]
|
| 204 |
+
x0_pred = _latent + dt * noise_pred
|
| 205 |
+
else:
|
| 206 |
+
raise NotImplementedError("Only Flow Scheduler is supported for now! For other schedulers, you need to manually implement the x0 prediction step.")
|
| 207 |
+
|
| 208 |
+
x0_preds.append(x0_pred)
|
| 209 |
+
next_latents.append(_latent)
|
| 210 |
+
|
| 211 |
+
if hasattr(pipe.scheduler, "_step_index"):
|
| 212 |
+
pipe.scheduler._step_index += 1
|
| 213 |
+
|
| 214 |
+
# if the size of next_latents > output_group_size, prune the latents
|
| 215 |
+
if len(next_latents) > output_group_size:
|
| 216 |
+
next_size = get_next_size(len(next_latents), output_group_size, 1 - pruning_ratio)
|
| 217 |
+
print(f"Pruning from {len(next_latents)} to {next_size}")
|
| 218 |
+
# decode the latents to pixels with tiny-vae
|
| 219 |
+
l_x0_decoded = [decode_latent(_latent, pipe, height, width) for _latent in x0_preds]
|
| 220 |
+
# compute the unary and binary scores
|
| 221 |
+
l_unary_scores = unary_score_fn(l_x0_decoded, target_caption=prompt)
|
| 222 |
+
M_binary_scores = binary_score_fn(l_x0_decoded) # upper triangular matrix
|
| 223 |
+
# run with Quadratic Integer Programming sover
|
| 224 |
+
t_start = time.time()
|
| 225 |
+
selected_indices = gurobi_solver(l_unary_scores, M_binary_scores, next_size, lam=lambda_score)
|
| 226 |
+
t_end = time.time()
|
| 227 |
+
print(f"Time taken for QIP: {t_end - t_start} seconds")
|
| 228 |
+
l_latents = [next_latents[_i] for _i in selected_indices]
|
| 229 |
+
else:
|
| 230 |
+
l_latents = next_latents
|
| 231 |
+
|
| 232 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipe.scheduler.order == 0):
|
| 233 |
+
progress_bar.update()
|
| 234 |
+
|
| 235 |
+
pipe._current_timestep = None
|
| 236 |
+
|
| 237 |
+
l_images = [pipe._unpack_latents(_latent, height, width, pipe.vae_scale_factor) for _latent in l_latents]
|
| 238 |
+
l_images = [(latents / pipe.vae.config.scaling_factor) + pipe.vae.config.shift_factor for latents in l_images]
|
| 239 |
+
l_images = [pipe.vae.decode(_image, return_dict=False)[0] for _image in l_images]
|
| 240 |
+
l_images_tensor = [image.clamp(-1, 1) for image in l_images] # Keep tensor version for scoring
|
| 241 |
+
l_images = [pipe.image_processor.postprocess(image, output_type="pil")[0] for image in l_images]
|
| 242 |
+
|
| 243 |
+
# Compute and print final scores
|
| 244 |
+
print(f"\n=== Final Scores for {len(l_images)} generated images ===")
|
| 245 |
+
|
| 246 |
+
# Compute unary scores
|
| 247 |
+
final_unary_scores = unary_score_fn(l_images_tensor, target_caption=prompt)
|
| 248 |
+
print(f"Unary scores (quality): {final_unary_scores}")
|
| 249 |
+
print(f"Mean unary score: {np.mean(final_unary_scores):.4f}")
|
| 250 |
+
|
| 251 |
+
# Compute binary scores
|
| 252 |
+
final_binary_scores = binary_score_fn(l_images_tensor)
|
| 253 |
+
print(f"Binary score matrix (diversity):")
|
| 254 |
+
print(final_binary_scores)
|
| 255 |
+
|
| 256 |
+
print("=" * 50)
|
| 257 |
+
|
| 258 |
+
pipe.maybe_free_model_hooks()
|
| 259 |
+
return l_images
|
| 260 |
+
|
my_utils/scores.py
ADDED
|
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import functools
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torchvision.models as models
|
| 7 |
+
import torchvision.transforms as transforms
|
| 8 |
+
import cv2
|
| 9 |
+
|
| 10 |
+
from transformers import CLIPProcessor, CLIPModel, AutoModel
|
| 11 |
+
from transformers.models.clip.modeling_clip import _get_vector_norm
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def validate_tensor_list(tensor_list, expected_type=torch.Tensor, min_dims=None, value_range=None, tolerance=0.1):
|
| 16 |
+
"""
|
| 17 |
+
Validates a list of tensors with specified requirements.
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
tensor_list: List to validate
|
| 21 |
+
expected_type: Expected type of each element (default: torch.Tensor)
|
| 22 |
+
min_dims: Minimum number of dimensions each tensor should have
|
| 23 |
+
value_range: Tuple of (min_val, max_val) for tensor values
|
| 24 |
+
tolerance: Tolerance for value range checking (default: 0.1)
|
| 25 |
+
"""
|
| 26 |
+
if not isinstance(tensor_list, list):
|
| 27 |
+
raise TypeError(f"Input must be a list, got {type(tensor_list)}")
|
| 28 |
+
|
| 29 |
+
if len(tensor_list) == 0:
|
| 30 |
+
raise ValueError("Input list cannot be empty")
|
| 31 |
+
|
| 32 |
+
for i, item in enumerate(tensor_list):
|
| 33 |
+
if not isinstance(item, expected_type):
|
| 34 |
+
raise TypeError(f"List element [{i}] must be {expected_type}, got {type(item)}")
|
| 35 |
+
|
| 36 |
+
if min_dims is not None and len(item.shape) < min_dims:
|
| 37 |
+
raise ValueError(f"List element [{i}] must have at least {min_dims} dimensions, got shape {item.shape}")
|
| 38 |
+
|
| 39 |
+
if value_range is not None:
|
| 40 |
+
min_val, max_val = value_range
|
| 41 |
+
item_min, item_max = item.min().item(), item.max().item()
|
| 42 |
+
if item_min < (min_val - tolerance) or item_max > (max_val + tolerance):
|
| 43 |
+
raise ValueError(f"List element [{i}] values must be in range [{min_val}, {max_val}], got range [{item_min:.3f}, {item_max:.3f}]")
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def build_score_fn(name, device="cuda"):
|
| 48 |
+
"""Build scoring functions for image quality and diversity assessment.
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
name: Score function name (clip_text_img, diversity_dino, dino_cls_pairwise, diversity_clip)
|
| 52 |
+
device: Device to load models on (default: cuda)
|
| 53 |
+
"""
|
| 54 |
+
d_score_nets = {}
|
| 55 |
+
|
| 56 |
+
if name == "clip_text_img":
|
| 57 |
+
m_clip = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
|
| 58 |
+
prep_clip = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 59 |
+
score_fn = functools.partial(unary_clip_text_img_t, device=device, m_clip=m_clip, preprocess_clip=prep_clip)
|
| 60 |
+
d_score_nets["m_clip"] = m_clip
|
| 61 |
+
d_score_nets["prep_clip"] = prep_clip
|
| 62 |
+
|
| 63 |
+
elif name == "diversity_dino":
|
| 64 |
+
dino_model = AutoModel.from_pretrained('facebook/dinov2-base').to(device)
|
| 65 |
+
score_fn = functools.partial(binary_dino_pairwise_t, device=device, dino_model=dino_model)
|
| 66 |
+
d_score_nets["dino_model"] = dino_model
|
| 67 |
+
|
| 68 |
+
elif name == "dino_cls_pairwise":
|
| 69 |
+
dino_model = AutoModel.from_pretrained('facebook/dinov2-base').to(device)
|
| 70 |
+
score_fn = functools.partial(binary_dino_cls_pairwise_t, device=device, dino_model=dino_model)
|
| 71 |
+
d_score_nets["dino_model"] = dino_model
|
| 72 |
+
|
| 73 |
+
elif name == "diversity_clip":
|
| 74 |
+
m_clip = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
|
| 75 |
+
prep_clip = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 76 |
+
score_fn = functools.partial(binary_clip_pairwise_t, device=device, m_clip=m_clip, preprocess_clip=prep_clip)
|
| 77 |
+
d_score_nets["m_clip"] = m_clip
|
| 78 |
+
d_score_nets["prep_clip"] = prep_clip
|
| 79 |
+
|
| 80 |
+
else:
|
| 81 |
+
raise ValueError(f"Invalid score function name: {name}")
|
| 82 |
+
|
| 83 |
+
return score_fn, d_score_nets
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
@torch.no_grad()
|
| 87 |
+
def unary_clip_text_img_t(l_images, device, m_clip, preprocess_clip, target_caption, d_cache=None):
|
| 88 |
+
"""Compute CLIP text-image similarity scores for a list of images.
|
| 89 |
+
|
| 90 |
+
Args:
|
| 91 |
+
l_images: List of image tensors in range [-1, 1]
|
| 92 |
+
device: Device for computation
|
| 93 |
+
m_clip: CLIP model
|
| 94 |
+
preprocess_clip: CLIP processor
|
| 95 |
+
target_caption: Text prompt for similarity comparison
|
| 96 |
+
d_cache: Optional cached text embeddings
|
| 97 |
+
"""
|
| 98 |
+
# validate input images, l_images should be a list of torch tensors with range [-1, 1]
|
| 99 |
+
validate_tensor_list(l_images, expected_type=torch.Tensor, min_dims=3, value_range=(-1, 1))
|
| 100 |
+
|
| 101 |
+
_img_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(device)
|
| 102 |
+
_img_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(device)
|
| 103 |
+
b_images = torch.cat(l_images, dim=0)
|
| 104 |
+
b_images = F.interpolate(b_images, size=(224, 224), mode="bilinear", align_corners=False)
|
| 105 |
+
# re-normalize with clip mean and std
|
| 106 |
+
b_images = b_images*0.5 + 0.5
|
| 107 |
+
b_images = (b_images - _img_mean) / _img_std
|
| 108 |
+
|
| 109 |
+
if d_cache is None:
|
| 110 |
+
text_encoding = preprocess_clip.tokenizer(target_caption, return_tensors="pt", padding=True).to(device)
|
| 111 |
+
output = m_clip(pixel_values=b_images, **text_encoding).logits_per_image /m_clip.logit_scale.exp()
|
| 112 |
+
_score = output.view(-1).cpu().numpy()
|
| 113 |
+
else:
|
| 114 |
+
# compute with cached text embeddings
|
| 115 |
+
vision_outputs = m_clip.vision_model(pixel_values=b_images, output_attentions=False, output_hidden_states=False,
|
| 116 |
+
interpolate_pos_encoding=False, return_dict=True,)
|
| 117 |
+
image_embeds = m_clip.visual_projection(vision_outputs[1])
|
| 118 |
+
image_embeds = image_embeds / _get_vector_norm(image_embeds)
|
| 119 |
+
text_embeds = d_cache["text_embeds"]
|
| 120 |
+
_score = torch.matmul(text_embeds, image_embeds.t().to(text_embeds.device)).t().view(-1).cpu().numpy()
|
| 121 |
+
|
| 122 |
+
return _score
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
@torch.no_grad()
|
| 126 |
+
def binary_dino_pairwise_t(l_images, device, dino_model):
|
| 127 |
+
"""Compute pairwise diversity scores using DINO patch features.
|
| 128 |
+
|
| 129 |
+
Args:
|
| 130 |
+
l_images: List of image tensors in range [-1, 1]
|
| 131 |
+
device: Device for computation
|
| 132 |
+
dino_model: DINO model for feature extraction
|
| 133 |
+
"""
|
| 134 |
+
# validate input images, l_images should be a list of torch tensors with range [-1, 1]
|
| 135 |
+
validate_tensor_list(l_images, expected_type=torch.Tensor, min_dims=3, value_range=(-1, 1))
|
| 136 |
+
|
| 137 |
+
b_images = torch.cat(l_images, dim=0)
|
| 138 |
+
_img_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
|
| 139 |
+
_img_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
|
| 140 |
+
|
| 141 |
+
b_images = F.interpolate(b_images, size=(256, 256), mode="bilinear", align_corners=False)
|
| 142 |
+
b_images = b_images*0.5 + 0.5
|
| 143 |
+
b_images = (b_images - _img_mean) / _img_std
|
| 144 |
+
all_features = dino_model(pixel_values=b_images).last_hidden_state[:, 1:, :].cpu() # B, 324, 768
|
| 145 |
+
|
| 146 |
+
N = len(l_images)
|
| 147 |
+
score_matrix = np.zeros((N, N))
|
| 148 |
+
for i in range(N):
|
| 149 |
+
f1 = all_features[i]
|
| 150 |
+
for j in range(i+1, N):
|
| 151 |
+
f2 = all_features[j]
|
| 152 |
+
cos_sim = (1 - F.cosine_similarity(f1, f2, dim=1)).mean().item()
|
| 153 |
+
score_matrix[i, j] = cos_sim
|
| 154 |
+
return score_matrix
|
| 155 |
+
|
| 156 |
+
@torch.no_grad()
|
| 157 |
+
def binary_dino_cls_pairwise_t(l_images, device, dino_model):
|
| 158 |
+
"""Compute pairwise diversity scores using DINO CLS token features.
|
| 159 |
+
|
| 160 |
+
Args:
|
| 161 |
+
l_images: List of image tensors in range [-1, 1]
|
| 162 |
+
device: Device for computation
|
| 163 |
+
dino_model: DINO model for feature extraction
|
| 164 |
+
"""
|
| 165 |
+
# validate input images, l_images should be a list of torch tensors with range [-1, 1]
|
| 166 |
+
validate_tensor_list(l_images, expected_type=torch.Tensor, min_dims=3, value_range=(-1, 1))
|
| 167 |
+
|
| 168 |
+
b_images = torch.cat(l_images, dim=0)
|
| 169 |
+
_img_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
|
| 170 |
+
_img_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
|
| 171 |
+
|
| 172 |
+
b_images = F.interpolate(b_images, size=(256, 256), mode="bilinear", align_corners=False)
|
| 173 |
+
b_images = b_images*0.5 + 0.5
|
| 174 |
+
b_images = (b_images - _img_mean) / _img_std
|
| 175 |
+
all_features = dino_model(pixel_values=b_images).last_hidden_state[:, 0:1, :].cpu() # B, 1, 768
|
| 176 |
+
|
| 177 |
+
N = len(l_images)
|
| 178 |
+
score_matrix = np.zeros((N, N))
|
| 179 |
+
for i in range(N):
|
| 180 |
+
f1 = all_features[i]
|
| 181 |
+
for j in range(i+1, N):
|
| 182 |
+
f2 = all_features[j]
|
| 183 |
+
cos_sim = (1 - F.cosine_similarity(f1, f2, dim=1)).mean().item()
|
| 184 |
+
score_matrix[i, j] = cos_sim
|
| 185 |
+
return score_matrix
|
| 186 |
+
|
| 187 |
+
@torch.no_grad()
|
| 188 |
+
def binary_clip_pairwise_t(l_images, device, m_clip, preprocess_clip):
|
| 189 |
+
"""Compute pairwise diversity scores using CLIP image embeddings.
|
| 190 |
+
|
| 191 |
+
Args:
|
| 192 |
+
l_images: List of image tensors in range [-1, 1]
|
| 193 |
+
device: Device for computation
|
| 194 |
+
m_clip: CLIP model
|
| 195 |
+
preprocess_clip: CLIP processor
|
| 196 |
+
"""
|
| 197 |
+
# validate input images, l_images should be a list of torch tensors with range [-1, 1]
|
| 198 |
+
validate_tensor_list(l_images, expected_type=torch.Tensor, min_dims=3, value_range=(-1, 1))
|
| 199 |
+
|
| 200 |
+
_img_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(device)
|
| 201 |
+
_img_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(device)
|
| 202 |
+
b_images = torch.cat(l_images, dim=0)
|
| 203 |
+
b_images = F.interpolate(b_images, size=(224, 224), mode="bilinear", align_corners=False)
|
| 204 |
+
# re-normalize with clip mean and std
|
| 205 |
+
b_images = b_images*0.5 + 0.5
|
| 206 |
+
b_images = (b_images - _img_mean) / _img_std
|
| 207 |
+
|
| 208 |
+
vision_outputs = m_clip.vision_model(pixel_values=b_images, output_attentions=False, output_hidden_states=False,
|
| 209 |
+
interpolate_pos_encoding=False, return_dict=True,)
|
| 210 |
+
image_embeds = m_clip.visual_projection(vision_outputs[1])
|
| 211 |
+
image_embeds = image_embeds / _get_vector_norm(image_embeds)
|
| 212 |
+
|
| 213 |
+
N = len(l_images)
|
| 214 |
+
score_matrix = np.zeros((N, N))
|
| 215 |
+
for i in range(N):
|
| 216 |
+
f1 = image_embeds[i]
|
| 217 |
+
for j in range(i+1, N):
|
| 218 |
+
f2 = image_embeds[j]
|
| 219 |
+
cos_sim = (1 - torch.dot(f1, f2)).item()
|
| 220 |
+
score_matrix[i, j] = cos_sim
|
| 221 |
+
return score_matrix
|
my_utils/solvers.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from gurobipy import Model, GRB, quicksum
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def gurobi_solver(u, D, n_select, lam=1.0, time_limit=5.0):
|
| 5 |
+
"""Solve quadratic integer programming problem for subset selection with unary and pairwise terms.
|
| 6 |
+
|
| 7 |
+
Args:
|
| 8 |
+
u: Unary scores for each item
|
| 9 |
+
D: Pairwise similarity matrix (upper triangular)
|
| 10 |
+
n_select: Number of items to select
|
| 11 |
+
lam: Weight for pairwise term (default: 1.0)
|
| 12 |
+
time_limit: Solver time limit in seconds (default: 5.0)
|
| 13 |
+
"""
|
| 14 |
+
n = len(u)
|
| 15 |
+
model = Model()
|
| 16 |
+
model.Params.LogToConsole = 0
|
| 17 |
+
model.Params.TimeLimit = time_limit
|
| 18 |
+
model.Params.OutputFlag = 0
|
| 19 |
+
|
| 20 |
+
# Variables: x[i] in {0,1}
|
| 21 |
+
x = model.addVars(n, vtype=GRB.BINARY, name="x")
|
| 22 |
+
# Constraint: exactly k items selected
|
| 23 |
+
model.addConstr(quicksum(x[i] for i in range(n)) == n_select, name="select_k")
|
| 24 |
+
|
| 25 |
+
# Objective: sum of unary + lambda * pairwise
|
| 26 |
+
linear_part = quicksum(u[i] * x[i] for i in range(n))
|
| 27 |
+
quadratic_part = quicksum(lam * D[i, j] * x[i] * x[j] for i in range(n) for j in range(i + 1, n))
|
| 28 |
+
|
| 29 |
+
model.setObjective(linear_part + quadratic_part, GRB.MAXIMIZE)
|
| 30 |
+
|
| 31 |
+
model.optimize()
|
| 32 |
+
selected_indices = [i for i in range(n) if x[i].X > 0.5]
|
| 33 |
+
return selected_indices
|