Spaces:
Runtime error
Runtime error
| import spaces | |
| import os | |
| import gradio as gr | |
| from models import download_models | |
| from rag_backend import Backend | |
| from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType | |
| from llama_cpp_agent.providers import LlamaCppPythonProvider | |
| from llama_cpp_agent.chat_history import BasicChatHistory | |
| from llama_cpp_agent.chat_history.messages import Roles | |
| import cv2 | |
| # get the models | |
| huggingface_token = os.environ.get('HF_TOKEN') | |
| download_models(huggingface_token) | |
| documents_paths = { | |
| 'blockchain': 'data/blockchain', | |
| 'metaverse': 'data/metaverse', | |
| 'payment': 'data/payment' | |
| } | |
| # initialize backend (not ideal as global variable...) | |
| backend = Backend() | |
| cv2.setNumThreads(1) | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| model, | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| top_k, | |
| repeat_penalty, | |
| ): | |
| chat_template = MessagesFormatterType.GEMMA_2 | |
| print("HISTORY SO FAR ", history) | |
| matched_path = None | |
| words = message.lower() | |
| for key, path in documents_paths.items(): | |
| if len(history) == 1 and key in words: # check if the user mentions a path word only during second interaction (i.e history has only one entry) | |
| matched_path = path | |
| break | |
| print("matched_path", matched_path) | |
| if matched_path: # this case would only be true in second interaction | |
| original_message = history[0][0] | |
| print("** matched path!!") | |
| query_engine = backend.create_index_for_query_engine(matched_path) | |
| message = backend.generate_prompt(query_engine, original_message) | |
| gr.Info("Relevant context indexed from docs...") | |
| elif (not matched_path) and (len(history) > 1): | |
| print("Using context from storage db") | |
| query_engine = backend.load_index_for_query_engine() | |
| message = backend.generate_prompt(query_engine, message) | |
| gr.Info("Relevant context extracted from db...") | |
| # Load model only if it's not already loaded or if a new model is selected | |
| if backend.llm is None or backend.llm_model != model: | |
| try: | |
| backend.load_model(model) | |
| except Exception as e: | |
| return f"Error loading model: {str(e)}" | |
| provider = LlamaCppPythonProvider(backend.llm) | |
| agent = LlamaCppAgent( | |
| provider, | |
| system_prompt=f"{system_message}", | |
| predefined_messages_formatter_type=chat_template, | |
| debug_output=True | |
| ) | |
| settings = provider.get_provider_default_settings() | |
| settings.temperature = temperature | |
| settings.top_k = top_k | |
| settings.top_p = top_p | |
| settings.max_tokens = max_tokens | |
| settings.repeat_penalty = repeat_penalty | |
| settings.stream = True | |
| messages = BasicChatHistory() | |
| # add user and assistant messages to the history | |
| for msn in history: | |
| user = {'role': Roles.user, 'content': msn[0]} | |
| assistant = {'role': Roles.assistant, 'content': msn[1]} | |
| messages.add_message(user) | |
| messages.add_message(assistant) | |
| try: | |
| stream = agent.get_chat_response( | |
| message, | |
| llm_sampling_settings=settings, | |
| chat_history=messages, | |
| returns_streaming_generator=True, | |
| print_output=False | |
| ) | |
| outputs = "" | |
| for output in stream: | |
| outputs += output | |
| yield outputs | |
| except Exception as e: | |
| yield f"Error during response generation: {str(e)}" | |
| demo = gr.ChatInterface( | |
| fn=respond, | |
| css=""" | |
| .gradio-container { | |
| background-color: #B9D9EB; | |
| color: #003366; | |
| }""", | |
| additional_inputs=[ | |
| gr.Dropdown([ | |
| 'Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf', | |
| 'Mistral-Nemo-Instruct-2407-Q5_K_M.gguf', | |
| 'gemma-2-2b-it-Q6_K_L.gguf', | |
| 'openchat-3.6-8b-20240522-Q6_K.gguf', | |
| 'Llama-3-Groq-8B-Tool-Use-Q6_K.gguf', | |
| 'MiniCPM-V-2_6-Q6_K.gguf', | |
| 'llama-3.1-storm-8b-q5_k_m.gguf', | |
| 'orca-2-7b-patent-instruct-llama-2-q5_k_m.gguf' | |
| ], | |
| value="gemma-2-2b-it-Q6_K_L.gguf", | |
| label="Model" | |
| ), | |
| gr.Textbox(value="""Solamente all'inizio, presentati come Odi, un assistente ricercatore italiano creato dagli Osservatori del Politecnico di Milano e specializzato nel fornire risposte precise e pertinenti solo ad argomenti di innovazione digitale. | |
| Solo nella tua prima risposta, se non è chiaro, chiedi all'utente di indicare a quale di queste tre sezioni degli Osservatori si riferisce la sua domanda: 'Blockchain', 'Payment' o 'Metaverse'. Nel fornire la risposta cita il report da cui la hai ottenuta. | |
| Per le risposte successive, utilizza la cronologia della chat o il contesto fornito per aiutare l'utente a ottenere una risposta accurata. | |
| Non rispondere mai a domande che non sono pertinenti a questi argomenti.""", label="System message"), | |
| gr.Slider(minimum=1, maximum=4096, value=3048, step=1, label="Max tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=1.2, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p", | |
| ), | |
| gr.Slider( | |
| minimum=0, | |
| maximum=100, | |
| value=30, | |
| step=1, | |
| label="Top-k", | |
| ), | |
| gr.Slider( | |
| minimum=0.0, | |
| maximum=2.0, | |
| value=1.1, | |
| step=0.1, | |
| label="Repetition penalty", | |
| ), | |
| ], | |
| retry_btn="Riprova", | |
| undo_btn="Annulla", | |
| clear_btn="Riavvia chat", | |
| submit_btn="Invia", | |
| title="Odi, l'assistente ricercatore degli Osservatori", | |
| chatbot=gr.Chatbot( | |
| scale=1, | |
| likeable=False, | |
| show_copy_button=True | |
| ), | |
| examples=[["Ciao, in cosa puoi aiutarmi?"],["Quanto vale il mercato italiano?"], ["Per favore dammi informazioni sugli ambiti applicativi"], ["Chi è Francesco Bruschi?"], ["Svelami una buona ricetta milanese"] ], | |
| cache_examples=False, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |