Spaces:
Sleeping
Sleeping
sbert based roles matching
Browse files- app.py +99 -0
- requirements.txt +6 -0
- roles_list.py +71 -0
app.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# imports
|
| 2 |
+
import json
|
| 3 |
+
import time
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from transformers import AutoTokenizer, AutoModel
|
| 7 |
+
import openai
|
| 8 |
+
# pytorch library
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn.functional as f
|
| 11 |
+
|
| 12 |
+
from fuzzywuzzy import process
|
| 13 |
+
|
| 14 |
+
from roles_list import roles
|
| 15 |
+
from openai import OpenAI
|
| 16 |
+
# Load the model from the specified directory
|
| 17 |
+
embed_store = {}
|
| 18 |
+
model = 'sentence-transformers/all-MiniLM-L12-v2'
|
| 19 |
+
sbert_model = AutoModel.from_pretrained(model)
|
| 20 |
+
sbert_tokenizer = AutoTokenizer.from_pretrained(model)
|
| 21 |
+
|
| 22 |
+
client = OpenAI(
|
| 23 |
+
# defaults to os.environ.get("OPENAI_API_KEY")
|
| 24 |
+
api_key="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",
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
for role in roles:
|
| 29 |
+
encoding = sbert_tokenizer(role, # the texts to be tokenized
|
| 30 |
+
max_length=10,
|
| 31 |
+
padding="max_length",
|
| 32 |
+
return_tensors='pt' # return the tensors (not lists)
|
| 33 |
+
)
|
| 34 |
+
with torch.no_grad():
|
| 35 |
+
# get the model embeddings
|
| 36 |
+
embed = sbert_model(**encoding)
|
| 37 |
+
embed = embed.pooler_output
|
| 38 |
+
embed_store[role] = f.normalize(embed, p=2, dim=1)
|
| 39 |
+
print("Model is ready for inference")
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def get_role_from_sbert(title):
|
| 43 |
+
start_time = time.time()
|
| 44 |
+
encoding = sbert_tokenizer(title,
|
| 45 |
+
max_length=10,
|
| 46 |
+
padding="max_length",
|
| 47 |
+
return_tensors='pt'
|
| 48 |
+
)
|
| 49 |
+
# Run the model prediction on the input data
|
| 50 |
+
with torch.no_grad():
|
| 51 |
+
# get the model embeddings
|
| 52 |
+
embed = sbert_model(**encoding)
|
| 53 |
+
embed = embed.pooler_output
|
| 54 |
+
store_cos = {}
|
| 55 |
+
for role in embed_store:
|
| 56 |
+
cos_sim = torch.nn.functional.cosine_similarity(f.normalize(embed, p=2, dim=1), embed_store[role])
|
| 57 |
+
store_cos[role] = round(cos_sim.item(), 3)
|
| 58 |
+
# Get the top 3 items with the highest cosine similarity
|
| 59 |
+
top_3_keys_values = sorted(store_cos.items(), key=lambda item: item[1], reverse=True)
|
| 60 |
+
job_scores_str = '\n'.join([f"{job}: {score}" for job, score in top_3_keys_values])
|
| 61 |
+
|
| 62 |
+
end_time = time.time()
|
| 63 |
+
execution_time = end_time - start_time
|
| 64 |
+
# Convert to dictionary if needed or keep as list of tuples
|
| 65 |
+
return job_scores_str + f" \nExecution time: {str(execution_time)}"
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def fuzzy_match(title):
|
| 69 |
+
"""
|
| 70 |
+
Find the best matches for a query from a list of choices using fuzzy matching.
|
| 71 |
+
|
| 72 |
+
Parameters:
|
| 73 |
+
- query: The search string.
|
| 74 |
+
- choices: A list of strings to search through.
|
| 75 |
+
- limit: The maximum number of matches to return.
|
| 76 |
+
|
| 77 |
+
Returns:
|
| 78 |
+
A list of tuples with the match and its score. Higher score means closer match.
|
| 79 |
+
"""
|
| 80 |
+
matches = process.extract(title, roles, limit=3)
|
| 81 |
+
return matches
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def fuzzy_match_sbert(title):
|
| 85 |
+
matches = fuzzy_match(title)
|
| 86 |
+
sbert_results = get_role_from_sbert(title)
|
| 87 |
+
|
| 88 |
+
new_list = [matches, sbert_results]
|
| 89 |
+
return new_list
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
demo = gr.Interface(fn=get_role_from_sbert,
|
| 93 |
+
inputs=gr.Textbox(label="Job Title"),
|
| 94 |
+
outputs=gr.Textbox(label="Role"),
|
| 95 |
+
title="HackerRank Role Classifier")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
gr.close_all()
|
| 99 |
+
demo.launch(server_name='0.0.0.0', server_port=8081, share=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==1.13.1
|
| 2 |
+
torchvision==0.14.1
|
| 3 |
+
transformers==4.26.1
|
| 4 |
+
gradio==3.18.0
|
| 5 |
+
openai
|
| 6 |
+
|
roles_list.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
roles = [
|
| 2 |
+
'Machine Learning Engineer',
|
| 3 |
+
'Sr. Machine Learning Engineer',
|
| 4 |
+
'Cloud Engineer',
|
| 5 |
+
'Cloud Engineer (AWS)',
|
| 6 |
+
'Cloud Security Engineer',
|
| 7 |
+
'Site Reliability Engineer',
|
| 8 |
+
'Sr. Cloud Engineer',
|
| 9 |
+
'Sr. Cloud Engineer (AWS)',
|
| 10 |
+
'Sr. Cloud Security Engineer',
|
| 11 |
+
'Sr. Site Reliability Engineer',
|
| 12 |
+
'Cybersecurity Engineer',
|
| 13 |
+
'Sr. Cybersecurity Engineer',
|
| 14 |
+
'Data Engineer',
|
| 15 |
+
'Data Engineer (Java Spark)',
|
| 16 |
+
'Data Engineer (PySpark)',
|
| 17 |
+
'Data Engineer (Scala Spark)',
|
| 18 |
+
'Sr. Data Engineer',
|
| 19 |
+
'Sr. Data Engineer (Java Spark)',
|
| 20 |
+
'Sr. Data Engineer (PySpark)',
|
| 21 |
+
'Sr. Data Engineer (Scala Spark)',
|
| 22 |
+
'Data Analyst',
|
| 23 |
+
'Data Analyst (Python)',
|
| 24 |
+
'Data Analyst (R)',
|
| 25 |
+
'Data Scientist',
|
| 26 |
+
'Sr. Data Analyst',
|
| 27 |
+
'Sr. Data Analyst (Python)',
|
| 28 |
+
'Sr. Data Analyst (R)',
|
| 29 |
+
'Sr. Data Scientist',
|
| 30 |
+
'Mobile Applications Developer (Android - Java)',
|
| 31 |
+
'Mobile Applications Developer (Android - Kotlin)',
|
| 32 |
+
'Mobile Applications Developer (React Native)',
|
| 33 |
+
'Sr. Mobile Applications Developer (Android - Java)',
|
| 34 |
+
'Sr. Mobile Applications Developer (Android - Kotlin)',
|
| 35 |
+
'Sr. Mobile Applications Developer (React Native)',
|
| 36 |
+
'QA Engineer (Selenium)',
|
| 37 |
+
'Quality Assurance Engineer',
|
| 38 |
+
'Quality Assurance Engineer (Mobile)',
|
| 39 |
+
'Sr. QA Engineer (Selenium)',
|
| 40 |
+
'Sr. Quality Assurance Engineer',
|
| 41 |
+
'Sr. Quality Assurance Engineer (Mobile)',
|
| 42 |
+
'Software Engineer',
|
| 43 |
+
'Software Engineer Intern',
|
| 44 |
+
'Sr. Software Engineer',
|
| 45 |
+
'Back-End Developer',
|
| 46 |
+
'Back-End Developer (.NET)',
|
| 47 |
+
'Back-End Developer (Django)',
|
| 48 |
+
'Back-End Developer (Laravel)',
|
| 49 |
+
'Back-End Developer (Node)',
|
| 50 |
+
'Back-End Developer (Rails)',
|
| 51 |
+
'Back-End Developer (Spring Boot)',
|
| 52 |
+
'Front-End Developer',
|
| 53 |
+
'Front-End Developer (Angular)',
|
| 54 |
+
'Front-End Developer (React)',
|
| 55 |
+
'Front-End Developer (Vue.js)',
|
| 56 |
+
'Full-Stack Engineer (Angular & Node)',
|
| 57 |
+
'Full-Stack Engineer (React & Node)',
|
| 58 |
+
'Sr. Back-End Developer',
|
| 59 |
+
'Sr. Back-End Developer (.NET)',
|
| 60 |
+
'Sr. Back-End Developer (Django)',
|
| 61 |
+
'Sr. Back-End Developer (Laravel)',
|
| 62 |
+
'Sr. Back-End Developer (Node)',
|
| 63 |
+
'Sr. Back-End Developer (Rails)',
|
| 64 |
+
'Sr. Back-End Developer (Spring Boot)',
|
| 65 |
+
'Sr. Front-End Developer',
|
| 66 |
+
'Sr. Front-End Developer (Angular)',
|
| 67 |
+
'Sr. Front-End Developer (React)',
|
| 68 |
+
'Sr. Front-End Developer (Vue.js)',
|
| 69 |
+
'Sr. Full-Stack Engineer (Angular & Node)',
|
| 70 |
+
'Sr. Full-Stack Engineer (React & Node)'
|
| 71 |
+
]
|